Большая солнечная печь. Большая Солнечная Печь - astlena

Большая Солнечная Печь представляет собой сложный оптико-механический комплекс с автоматическими системами управления, состоящий из гелиостатного поля и параболоидного концентратора, формирующих в фокальной зоне концентратора стационарный поток энергии высокой плотности. Площадь отражающей поверхности гелиостатного поля — 3020 м², концентратора — 1840 м². Температура в фокусе лучей концентратора превышает 3000 градусов Цельсия. Это самая большая солнечная печь в мире.

2. Гелиокомплекс расположен в 45 км от Ташкента, в Паркентском районе, в предгорьях Тянь-Шаня на высоте 1100 метров над уровнем моря. Он был построен в период с 1981 по 1987 год. Место для строительства выбиралось очень тщательно: во-первых весь комплекс расположен на едином скальном массиве, что очень важно т.к. он расположен в сейсмически опасном районе, во-вторых, количество солнечных дней в году здесь не менее 270.


3. Начнём осмотр с малой солнечной печи. Она представляет собой зеркальный парабалоид диаметром около 2 метров, фокусирующий солнечные лучи в точку диаметром 2 сантиметра


4. Максимальная температура, которую можно получить в этой печи — 2000 градусов цельсия. Интересный визуальный эффект можно наблюдать с предметами, размещенными ближе фокусного расстояния. Вот, например, изображение netwind’а стоящего рядом с зеркалом увеличивается, а всё, что находится дальше отражается в перевернутом виде.


5. «Волей партии, желанием народа здесь будет построен комплекс Солнце», май 1981 год. Воплотить в жизнь смелый проект «Институт Солнца» стало возможным благодаря усилиям и энтузиазму академика Саида Азимовича Азимова. Тригонометрический пункт и мемориальная плита в самой высокой точке комплекса — 1100 метров над уровнем моря.


Научный гелиокомплекс включает 4 структурных подразделения: главный корпус, гелиостатное поле, концентратор, технологическая башня.

6. Гелиостатное поле состоит из 62 гелиостатов, размещенных в шахматном порядке (для уменьшения затенения) на пологом склоне горы напротив концентратора.


7. Каждый гелиостат размером 7,5х6,5 метров состоит из 195 плоских зеркальных элементов, называемых «фацетами».


8. Отражающая площадь гелиостатного поля равна 3022 квадратных метров.


Из архива. Продольный разрез концентратора и гелиостатного поля.


9. Датчики автоматически корректируют положение каждого гелиостата в соответствии с движением солнца. Каждый гелиостат может поворачиваться как по вертикали, так и по горизонтали.


10. Размер отдельного зеркала — 50х50 сантиметров.


11. Отражающий слой фацеты образован вакуумным напылением алюминия с тыльной стороны и защищен акриловой краской.


12. Всего на гелиостатном поле используется 12090 зеркал.


13. Управление зеркалами полностью автоматизировано и используются готовые программы на каждые день, учитывающие положение солнца на небе.


14. А вот и главный объект — параболический гелиоконцентратор. Это самый большой в мире геликонцентратор, площадью 1840 квадратных метров. Для оценки масштаба посмотрите на людей в левой нижней части кадра.


Из архива. Эскиз концентратора и гелиостатного поля.


15. В концентраторе используется 10700 зеркал, общей площадью 1840 квадратных метров. Зеркала собраны в 214 блоков, размером 4,5х2,25 метра, по 50 зеркал в каждом.


16. Концентратор установлен неподвижно и ориентирован в направлении север-юг.


17. Поток солнечной энергии, направленный гелиостатами, отражается от зеркальной параболической поверхности концентратора и фокусируется в одну точку на технологической башне, диаметром 40 сантиметров.


18. По центру параболической поверхности концентратора, на высоте 6 этажа, располагается пирометрическая лаборатория, откуда управляют работой печи.


19. Панорамный вид на технологическую башню и концентратор.


20. Верхняя точка концентратора приходится на отметку 1100 метров над уровнем моря, которая совпадает с точкой установки мемориальной плиты на вершине гелиостатного поля. Размер «зеркала» концентратора — 47х54 метра. А каждое отдельное зеркало имеет размеры 45х45 сантиметров.

Нет, это не база инопланетян и не съемочная площадка научно-фантастических фильмов. Это - Большая Солнечная Печь (БСП) мощностью 700 киловатт, расположенная в Узбекистане. Всего в мире две таких печи, вторая находится во Франции. Давайте вместе посмотрим на это уникальное сооружение.

Большая Солнечная Печь представляет собой сложный оптико-механический комплекс с автоматическими системами управления, состоящий из гелиостатного поля и параболоидного концентратора, формирующих в фокальной зоне концентратора стационарный поток энергии высокой плотности. Площадь отражающей поверхности гелиостатного поля - 3020 м², концентратора - 1840 м². Температура в фокусе лучей концентратора превышает 3000 градусов Цельсия. Это самая большая солнечная печь в мире.

2. Гелиокомплекс расположен в 45 км от Ташкента, в Паркентском районе, в предгорьях Тянь-Шаня на высоте 1100 метров над уровнем моря. Он был построен в период с 1981 по 1987 год. Место для строительства выбиралось очень тщательно: во-первых весь комплекс расположен на едином скальном массиве, что очень важно т.к. он расположен в сейсмически опасном районе, во-вторых, количество солнечных дней в году здесь не менее 270.

3. Начнём осмотр с малой солнечной печи. Она представляет собой зеркальный парабалоид диаметром около 2 метров, фокусирующий солнечные лучи в точку диаметром 2 сантиметра

4. Максимальная температура, которую можно получить в этой печи - 2000 градусов цельсия. Интересный визуальный эффект можно наблюдать с предметами, размещенными ближе фокусного расстояния. Вот, например, изображение netwind’а стоящего рядом с зеркалом увеличивается, а всё, что находится дальше отражается в перевернутом виде.

5. «Волей партии, желанием народа здесь будет построен комплекс Солнце», май 1981 год. Воплотить в жизнь смелый проект «Институт Солнца» стало возможным благодаря усилиям и энтузиазму академика Саида Азимовича Азимова. Тригонометрический пункт и мемориальная плита в самой высокой точке комплекса - 1100 метров над уровнем моря.

Научный гелиокомплекс включает 4 структурных подразделения: главный корпус, гелиостатное поле, концентратор, технологическая башня.

6. Гелиостатное поле состоит из 62 гелиостатов, размещенных в шахматном порядке (для уменьшения затенения) на пологом склоне горы напротив концентратора.

7. Каждый гелиостат размером 7,5х6,5 метров состоит из 195 плоских зеркальных элементов, называемых «фацетами».

8. Отражающая площадь гелиостатного поля равна 3022 квадратных метров.

Из архива. Продольный разрез концентратора и гелиостатного поля.

9. Датчики автоматически корректируют положение каждого гелиостата в соответствии с движением солнца. Каждый гелиостат может поворачиваться как по вертикали, так и по горизонтали.

10. Размер отдельного зеркала - 50х50 сантиметров.

11. Отражающий слой фацеты образован вакуумным напылением алюминия с тыльной стороны и защищен акриловой краской.

12. Всего на гелиостатном поле используется 12090 зеркал.

13. Управление зеркалами полностью автоматизировано и используются готовые программы на каждые день, учитывающие положение солнца на небе.

14. А вот и главный объект - параболический гелиоконцентратор. Это самый большой в мире геликонцентратор, площадью 1840 квадратных метров. Для оценки масштаба посмотрите на людей в левой нижней части кадра.

Из архива. Эскиз концентратора и гелиостатного поля.

15. В концентраторе используется 10700 зеркал, общей площадью 1840 квадратных метров. Зеркала собраны в 214 блоков, размером 4,5х2,25 метра, по 50 зеркал в каждом.

16. Концентратор установлен неподвижно и ориентирован в направлении север-юг.

17. Поток солнечной энергии, направленный гелиостатами, отражается от зеркальной параболической поверхности концентратора и фокусируется в одну точку на технологической башне, диаметром 40 сантиметров.

18. По центру параболической поверхности концентратора, на высоте 6 этажа, располагается пирометрическая лаборатория, откуда управляют работой печи.

19. Панорамный вид на технологическую башню и концентратор.

20. Верхняя точка концентратора приходится на отметку 1100 метров над уровнем моря, которая совпадает с точкой установки мемориальной плиты на вершине гелиостатного поля. Размер «зеркала» концентратора - 47х54 метра. А каждое отдельное зеркало имеет размеры 45х45 сантиметров.

21. Вес металлических конструкций концентратора - 200 тыс. тонн. На самый верх (12 этаж) ходит грузопассажирский лифт. А вот так концентратор выглядит изнутри.

22. Южная сторона концентратора. Для защиты от солнечных лучей и температурной деформации металликонструкций концентратор закрыт специальными солнцезащитными экранами. На переднем плане простейшая экспериментальная солнечная печь собранная из стальных листов.

23. Пирометрическая лаборатория на 6 этаже концентратора. Её окна выходят на технологическую башню. Отсюда управляют работой печи.

24. На верхней отметке концентратора расположена смотровая площадка. Внизу расположен посёлок Солнце, с многоэтажными домами для сотрудников института.

25. Ещё выше красные визирные метки для юстировки всех 62 гелиостатов.

26. Отсюда же открывается обзорный вид на гелиостатное поле.

27. Матрица визирных меток.

28. Фокусное расстояние концентратора - 18 метров, именно на этом расстоянии расположена технологическая башня с печью. В нерабочем состоянии дверцы печи закрыты и принудительно охлаждаются.

29. Лестнично-лифтовой блок на южной стороне концентратора.

30. Преимущество солнечных печей состоит в мгновенном достижении высокой температуры, позволяющей получать чистые материалы без примесей (в том числе благодаря чистоте горного воздуха). Поэтому в ней металлы и сплавы характеризуются крайне высокой чистотой и отсутствием примесей. И ещё один важный аргумент - за солнечную энергию не нужно платить.

Ну и разумеется нельзя обойти вниманием вторую Большую Солнечную Печь в мире.

Большая Солнечная Печь в Фон-Роме-Одейо (Франция)

Лаборатория Солнца была первой в мире солнечной печью с такими размерами. Её строительство было выполнено в 1962-1968 годах. Весь комплекс заработал в 1970 году. Печь состоит из параболического концентратора, с размерами 54х48 метра и 63 гелиостатов. Общая площадь отражающей поверхности концентратора всего на 10 квадратных метров меньше, чем у БСП в Паркенте, но из-за того, что весь комплекс расположен выше (на высоте 1600 метров над уровнем моря) и применены более высококачественные зеркала - максимальная мощность французской солнечной печи выше и составляет 1 Мегаватт.

БСП можно использовать для получения чистого металла циркония без каких-либо примесей. Температура плавления оксида циркония - 2700 градусов цельсия! Производительность печи в данном случае может составлять почти 2,5 тонны циркония в день.

Согласитесь, что гелиокомплексы очень похожи друг на друга.

В настоящее время в Физико-техническом институте (ФТИ) НПО «Физика-Солнце» занимаются научно-техническими разработками в области физики высоких энергий, физики полупроводников, преобразования солнечной энергии, теории твердого тела.

Когда-то здесь проводили испытания обшивки космических аппаратов и военной техники, а сейчас на базе института создана производственная линия керамических изделий, на основе материалов синтезированных в БСП. В частности это корпуса предохранителей и высоковольный фарфор. Здесь же разработаны и созданы малые солнечные печи, мощностью 1500 ватт, которые уже работают в Египте и Индии. Ещё БСП можно использовать как астрофизический инструмент для исследований звездного неба в ночное время.

Уникальная техническая база комплекса «Физика-Солнце» позволяет проводить многоцелевые наблюдения за Солнцем и заниматься не только теоретическими, но и экспериментальными исследованиями.

На фото, один из двух таких объектов, расположенных на нашей планете. Технологиями и возможностями для его разработки и возведения, обладали две страны в мире, СССР и Франция. Эти сложнейшие опытные устройства, предназначены для развития фундаментальной науки, путём проведения с их помощью научных экспериментов.

Советский объект начали стоить в 80-е и возвели в 1987 году в УзССР, недалеко от Ташкента, на высоте 1050 метров.

Объект этот состоит из параболоидного концентратора из более чем 10 700 зеркал, размером 50х50 см каждое, технологической башни и улавливающих солнечный свет гелиостатов 62 шт., размером 6,5х7 метров, расположенных каскадом в шахматном порядке. Называется он оптико-зеркальный комплекс"Солнце" с Большой солнечной печью тепловой мощностью 1000 кВт.


Параболоидный концентратор


Технологическая башня с Большой солнечной печью


Гелиостаты расположенные на каскадном поле

Гелиостаты управляются с помощью датчиков, изменяя своё положение в горизонтальной и вертикальной плоскостях в зависимости от расположения солнца.

Внутри технологической башни расположенная Большая солнечная печь. Большая Солнечная Печь представляет собой сложный оптико-механический комплекс с автоматическими системами управления, состоящий из гелиостатного поля и параболоидного концентратора, формирующих в фокальной зоне концентратора стационарный поток энергии высокой плотности. Площадь отражающей поверхности гелиостатного поля - 3020 м², концентратора - 1840 м². Температура в фокусе лучей концентратора превышает 3000 градусов цельсия. Это самая большая солнечная печь в мире.

Кратко о создании комплекса и о задачах по развитию фундаментальной науки, которые выполняемых комплексом "Солнце" :

На базе подразделений ФТИ в 1956г. создан Институт ядерной физики, в 1967г. - Институт электроники. В 1986 г. на базе института организовано Научно-производственное объединение “Физика-Солнце”. В 1987г. на основе научно-технических разработок института под руководством академика С.А.Азимова введен в эксплуатацию уникальный оптико-зеркальный комплекс с Большой солнечной печью тепловой мощностью 1000 кВт. На базе этого комплекса в 1993г. создан Институт материаловедения, входящий в состав НПО “Физика-Солнце” АН РУз. Физико-технический институт в настоящее время выполняет фундаментальные исследования и осуществляет научно-технические разработки по четырем направлениям:

Физика высоких энергий - изучение фундаментальных законов взаимодействия частиц и ядер при ускорительных энергиях и сверхвысоких энергиях космического излучения;
- физика полупроводников - исследование физических процессов в полупроводниковых материалах и структурах с целью создания технологий эффективных фотопреобразователей, фотоприёмников и различных высокочувствительных датчиков;
- преобразование солнечной энергии- развитие основ прямого, термодинамического и теплового преобразования солнечной энергии и разработка конструкций высокоэффективных гелиотехнических установок.
- теория твердого тела - исследование нелинейных волновых возбуждений в конденсированных средах и оптических системах.

В процессе использования комплекса удалось осуществить решить ряд прикладных задач. Среди практических разработок НПО «Физика-Солнце» :

Изготовление корпусов предохранителей типа ПН-2 на 100, 250, 400А, опытных партий корпусов предохранителей ПКТ-10;
Разработка составов высоковольтного электротехнического фарфора;
На основе разработанных керамических масс отлажено производство колодок к электроутюгам;
Разработка и создание комбинированной системы получения водорода, электрической энергии и высокотемпературного пара одновременно;
Разработка и создание малых солнечных печей мощностью 1500 Вт, которые в рамках международных договоров поставлены в институт металлургии в Каире (Египет) и институт порошковой металлургии в Хайдарабаде (Индия);
Для текстильной промышленности выпускаются более 30 видов нитеводителей и нитенаправителей;
Для медицины разработаны инфракрасные излучатели, применяемые при лечении различных заболеваний, а так же для стерилизации хирургических и стоматологических инструментов;
Для нефтегазовой промышленности выпускаются элементы керамического понтона, используемые в технологическом процессе хранения нефти и нефтепроддуктов с целью снижения потерь, связанных с испарением легколетучих фракций. Выпускаются фарфоровые шары для адсорбентов цеолитовой очистки газа, опытные керамические фильтры для очистки природного газа от различных примесей;
Разработаны керамические плитки «керамогранит» на базе местного сырья и отходов производства;
Разработаны и созданы различные виды энергосберегающих сушилок с эффективностью 30-50%.

Комплекс "Солнце", не только уникальнейший высокотехнологичный объект, это также произведение архитектуры.

Французская солнечная печь.

Лаборатория Солнца в Фон-Роме-Одейо , была первой в мире солнечной печью с такими размерами. Её строительство было выполнено в 1962-1968 годах. Весь комплекс заработал в 1970 году. Печь состоит из параболического концентратора, с размерами 54х48 метра и 63 гелиостатов. Общая площадь отражающей поверхности концентратора всего на 10 квадратных метров меньше, чем у БСП в Паркенте, но из-за того, что весь комплекс расположен выше (на высоте 1600 метров над уровнем моря) и применены более высококачественные зеркала - максимальная мощность французской солнечной печи выше и составляет 1 Мегаватт.


Лаборатория Солнца в Фон-Роме-Одейо, Франция.

В отличии от Советского комплекса, архитектура французского - утилитарная.

Вот такой вот "солярный" символ могущества единой страны, мощи её науки и технологического уровня развития.

Источники:

1. Ежегодник Большой Советской Энциклопедии, 1989, выпуск 33, Москва, 1989 год.

2. ФТИ, НПО “Физика-Солнце” АН РУз

Эта безумная по своей затее инженерная конструкция расположена в Паркентском районе, в предгорьях Тянь-Шаня, около 45 км от Ташкента на высоте 1050 метров.

Строительство комплекса «Солнце» началось в далёком 1981 году. На данный момент в мире существует только два подобных сложнейших инженерных объекта: во Франции и у нас, в бывшем СССР. Инженерная разработка такого сооружения стоит совершенно безумных денег и была возможна только при Советском Союзе, зато эксплуатация получается практически бесплатной. На солнечной энергии в течение дня в печи может создаваться контролируемая температура значением до 3000 градусов Цельсия.

Основное параболическое зеркало размером 54 на 54 метра формирует сфокусированный луч диаметром 1.2 метра. В центре, за зеркальным полотном, расположено помещение исследовательского центра, откуда ведется наблюдение за процессом плавки металлов.

Общее количество зеркальных элементов на концентраторе - 10700 штук.

На концентратор лучи света направляют 62 гелиостата, расположенные на пологом склоне в шахматном порядке. Размер каждого гелиостата 7,5 на 6,5 метра.

Гелиостаты работают в автоматическом режиме, то есть, следуя за солнцем, они распределяют солнечые потоки на главном концентраторе таким образом, чтобы в печи создавалась нужная температура: от 800 до 3000 градусов.

В технологической башне напротив концентратора расположена сама печь, а также специальный шторно-щелевой затвор, который позволяет получить луч нужной формы и контролирует длительность температурного воздействия.

В первую очередь, такая солнечная печь нужна, конечно, не для простой переплавки металлов, хотя такую функцию она тоже может выполнять. Основная задача комплекса - это научные исследования.
Скажем, нам нужно узнать, как будет вести себя обшивка космического корабля при резком солнечном воздействии и нагреве корпуса до 2000 градусов в течение двух секунд. Без такого комплекса провести подобные исследования будет непросто.

Количество солнечных дней в этом районе около 270.

Разреженный горный воздух также способствует чистоте экспериментов.

Эта фотография была бы невозможна без нашего друга anton_ermachkov :)

А вокруг этой космической красоты - деревни.

Тут растят виноград.

При выезде из Узбекистана, несмотря на все официальные согласования и письма, а также сам факт того, что эта съёмка состоялась, эти фотографии были удалены с флешки по требованию узбекского КГБ. По их мнению, этот объект считается секретным. Для сравнения: подобный комплекс во Франции ежегодно посещают 80 тысяч туристов из разных стран мира.

Экология потребления. Наука и техника: Большая солнечная печь представляет собой сложный оптико-механический комплекс с автоматическими системами управления, состоящий из гелиостатного поля и параболоидного концентратора

Исследования и синтез тугоплавких материалов под воздействием сконцентрированного солнечного излучения были начаты в Физико-техническом институте АH РУз (ФТИ) в 1976 г. и стали основным научным направлением Института материаловедения, организованного в 1993 г. на базе нескольких лабораторий ФТИ и БСП.

Большая солнечная печь представляет собой сложный оптико-механический комплекс с автоматическими системами управления, состоящий из гелиостатного поля и параболоидного концентратора, формирующих в фокальной зоне концентратора (технологическая башня) лучистый стационарный поток высокой плотности.

Печь расположена в 45 км от Ташкента, в Паркентском районе, в предгорьях Тянь-Шаня. Высота над уровнем моря 1050 м. Гелиостатное поле образуется 62 гелиостатами, размещенными на пологом склоне горы в шахматном порядке, которые обеспечивают в режиме непрерывного слежения за Солнцем в течение рабочего дня освещение всей зеркальной поверхности концентратора. Все 62 гелиостата комплекса имеют одинаковую конструкцию и размеры. Отражающая поверхность гелиостата размером 7,5 х 6,5 м плоская, составная, включает 195 зеркальных элементов - фацет размером 0,5 х 0.5 м и толщиной 6 мм. Отражающий слой фацеты образован вакуумным напылением алюминия с тыльной стороны и защищен акриловой краской марки ЭM АК-5164. Общее количество фацет 12090 шт., площадь отражающей поверхности составляет 3022,5 м 2 .

Монтировка гелиостата альт-азимутальная. Тип привода электромеханический. Кинематические схемы угла места и азимутального позволяют с погрешностью не более 1 угл. мин перемещать гелиостат в режиме слежения за Солнцем.

Управление работой приводов осуществляется по сигналам датчика системы слежения, расположенного перед центральной фацетой гелиостата, среднеквадратичная погрешность поверхности которой не превышает 30 угл. с.

Предусмотрена система синхронного управления всеми гелиостатами, расположенными на одной полке, одним ведущим гелиостатом полки. Погрешность такого управления не превышает 3 угл. мин. Кроме того, все 62 гелиостата в режиме автоматической системы регулирования температуры (АСРТ), предназначенной для обеспечения различных видов распределения светового потока, имеют возможность слежения с углом рассогласования до +25 угл. мин.

Управление может осуществляться и с помощью автоматизированной системы управления гелиостатным полем (АСУГ). Использование АСУГ позволяет гибко управлять распределением плотности лучистого потока в фокальной зоне печи и открывает возможности для проведения астрофизических исследований в ночное время, использования БСП как уникального астрофизического инструмента.

Формирование требуемой плотности лучистого потока осуществляется выводом из режима слежения отдельных гелиостатов под контролем радиометра с сопутствующими измерениями прямой солнечной радиации на актинометрическом стенде с помощью режима АОРТ или программным путем (АСУГ).

Отражающая поверхность концентратора представляет собой прямоугольно-ступенчатую высечку из параболоида вращения с фокусным расстоянием 18 м. Высота миделя концентратора 42,5 м, верхняя кромка расположена на высоте 54 м от земли, ширина миделя 54 м. Общая площадь миделя отражающей поверхности 1840 м 2 , а площадь самой поверхности 2060 м 2 . На солнечной энергии в течение дня в печи может создаваться контролируемая температура значением до 3000 градусов Цельсия.

Концентратор монтируется из 214 блоков в форме параллелограммов, с размерами сторон 4,5 х 2,25 м каждый, но с разными углами при вершинах, определяемыми координатами блока. На каждом блоке установлено 50 отражающих элементов - фацет ромбической формы. Общее количество фацет 10700 шт. Блоки крепятся к каркасу четырьмя узловыми точками, причем узлы крепления блоков позволяют скомпенсировать невысокую точность металлоконструкции каркаса концентратора и осуществить юстировку блоков в единую высокоточную параболоидную поверхность. Кроме того, монтаж и юстировка отдельных фацет на блоке осуществляются с помощью специальных юстировочных узлов. Такая система обеспечивает формирование концентрирующей поверхности с точностью не хуже 1 угл. мин.

Зеркало фацеты стеклянное, с тыльным отражающим слоем, образованным алюминиевой пленкой, нанесенной способом вакуумного напыления. Размеры зеркала 447 х 447 х 5. Отражающие поверхности фацет образованы деформационным способом и повторяют кривизну соответствующей зоны параболоида, на которой они установлены. Фацеты по форме имеют 10 типоразмеров.

В технологической башне размещено различное оборудование с необходимыми инженерными коммуникациями для проведения плавки материалов и специальных исследований в фокальной зоне БСП.

Шторный и роторно-щелевой затворы обеспечивают получение световых импульсов различной формы с длительностью 1 с и более. Автоматическая система регистрации импульсов с помощью фотометрического измерителя позволяет измерять характеристики полученных импульсов и исследовать образцы размерами до 1 м в диаметре. Образцы могут подвергаться комплексному воздействию световых потоков, механических нагрузок и обдуву.

Для проведения контрольно-юстировочных работ по настройке отдельных элементов БСП, измерения энергетических и спектральных характеристик фокального пятна используются анализатор фокального пятна, автоматическая система регистрации плотности энергии с помощью радиометра, телевизионная измерительная система, система технического зрения.

Наблюдения за изменением прямой солнечной радиации в течение многих лет в месте расположения объекта "Солнце" показывают, что в течение года количество условных солнечных дней составляет 250-270 дней.

Коэффициент зеркального отражения оптических элементов установки, усредненное значение которого близко к 0,7, с течением времени из-за запыленности воздуха падает и может снизиться до 0,5, поэтому требуются регулярные профилактические работы. Точность отражающих элементов с учетом поверхностных ошибок зеркал колеблется в интервале 35 угл. мин. Суммарная мощность печи около 0,7 МВт, максимальный диаметр фокального пятна 1,2 м. опубликовано

Загрузка...
Top