Как определить угол подъема резьбы. Общие сведения о резьбах

Профиль резьбы – это форма выступа и канавки резьбы в плоскости осевого сечения.

Угол профиля α – это угол между смежными боковыми сторонами профиля в плоскости осевого сечения.

Виток – часть резьбы, образованной при одном полном повороте профиля вокруг оси.

Шаг резьбы Р – расстояние между соседними одноименными боковыми сторонами профиля в направлении, параллель-ном оси резьбы.

Ход резьбы Р h – расстояние между ближайшими одноименными боковыми сторонами профиля, принадлежащими одной и той же винтовой поверхности, в направлении, параллельном оси резьбы. Ход резьбы есть величина относительного осевого перемещения винта (гайки) за один оборот.

Резьбы классифицируется по следующим признакам :

по форме профиля – треугольные, трапецеидальные, прямоугольные, круглые и другие резьбы;

по форме поверхности – цилиндрические (резьба, образованная на цилиндрической поверхности), конические (резьба, образованная на конической поверхности);

по расположению – наружная (резьба, образованная на наружной цилиндрической или конической поверхности) и внутренняя (резьба, образованная на внутренней цилиндрической или конической поверхности);

по эксплуатационному назначению крепежные, крепежно-уплотни-тельные, ходовые и специальные.

Крепежная резьба – резьба, которая обеспечивает неподвижное соединение деталей. К этому типу относится метрическая резьба.

Метрическая резьба (М) – основной тип крепежной резьбы треугольного профиля. Она обеспечивает надежное неподвижное соединение деталей при статических и динамических нагрузках. Резьба метрическая применяется в таких крепежных деталях как: болты, винты, шпильки, гайки и т. п. Профиль ее – равносторонний треугольник с углом при вершине 60º (Рис.3). Вершины профиля срезаны, а впадины могут быть срезаны либо скруглены. Скругление впадин повышает прочность резьбы.

Метрические резьбы бывают с крупным (единственным для данного диаметра резьбы) и мелкими шагами, которых для данного диаметра может быть несколько. Например, для диаметра d = 20 мм крупный шаг всегда равен 2,5 мм (М20), а мелкий может быть равен 0,5; 1; 1,75; и 2 мм. Поэтому в обозначении метрической резьбы крупный шаг не указывается, а мелкий указывается обязательно (М20х2).

Резьба с мелким шагом применяется при соединении тонкостенных деталей, при ограниченной длине свинчивания, а также там, где требуется повышенная прочность и надежность соединения.

Представителями крепежно-уплотнительных резьб (резьба, основным назначением которой является обеспечение герметичности соединения при различном температурном режиме) являются трубная цилиндрическая и трубная коническая резьбы.

Трубная цилиндрическая резьба (G)имеет профиль в виде равнобедренного треугольника с углом при вершине 55°, вершины и впадины скруглены (Рис. 4). Эта резьба правая. Применяется трубная цилиндрическая резьба для соединения труб и арматуры трубопроводов в жидко- или газообразных средах, находящихся под давлением.

Трубная коническая резьба (R), профилем которой также является равнобедренный треугольник с углом при вершине 55°(Рис.5), нарезается внутри и снаружи поверхностей с конусностью 1:16. Применяется в трубопроводах, подвергнутых высоким давлениям и температурам, так как обеспечивает высокую герметичность соединения.

К ходовым резьбам (резьба, служащая для преобразования вращательного движения в поступательное с одновременной передачей усилий) относятся трапециидальная, упорная, прямоугольная резьбы.

Трапецеидальная резьба (Тr) относится и применяется для передачи возвратно-поступательного движения. Она может быть однозаходной и многозаходной, левой и правой. Профиль ее – равнобокая трапеция, продолжение боковых сторон которой образует угол 30°(Рис. 6).

Упорная резьба (S ) также относится к ходовым резьбам и может быть однозаходной, многозаходной, левой и правой. Профиль ее – неравнобокая трапеция, с углом нерабочей стороны 30° и рабочей 3°(Рис.7). Применяется упорная резьба в механизмах, где передаются большие усилия в одном направлении, например, в прессах, домкратах и т. п.

Прямоугольная резьба применяются для передачи движения в ходовых винтах. Профиль резьбы прямоугольный (Рис. 8). Эта резьба не стандартизована. Нестандартная резьба изображается так же, как и стандартная. Профиль и все размеры, необходимые для ее изготовления, задаются на изображении или показываются на выносном элементе в большем масштабе. Сведения о числе заходов левой резьбы записывается на полках выносных линий.

На рис. 9 изображены резьбовые соединения, на которых одна деталь ввинчена в другую.

На продольных разрезах показана только та часть внутренней резьбы, которая не закрыта завернутой в нее деталью, контур ввинчиваемой детали выполняется сплошной основной линией.

Характеристики резьбы

1. Профиль резьбы является основным признаком, характеризующим резьбу. Профилем резьбы называется сечение ее витка плоскостью, проходящей через ось цилиндра (т. е. диаметральной плоскостью), на котором образована резьба.

Элементы профиля резьбы - это его боковые стороны, угол, вершина и впадина. Углом профиля называется угол между боковыми сторонами витка, измеренный в диаметральной плоскости.

Вершиной профиля называется линия, соединяющая боковые стороны его по верху витка (Е) - рис.1, а, б.

Рис.1. Вершины и впадины профиля.

Впадиной профиля называется линия, образующая дно винтовой канавки (F) - рис.1, а, б. Очертания вершины и впадины могут быть плоскосрезанными (рис.1, а) или закругленными (рис.1, б).

2. Шаг резьбы - это расстояние между двумя одноименными (т. е. правыми или левыми) точками двух соседних витков, измеренное параллельно оси резьбы. Почти у всех резьб, принятых в машиностроении, шаг измеряется в миллиметрах. Существуют, однако, также резьбы, у которых шаг выражается числом витков резьбы на один дюйм ее длины.

Кроме винтов, на токарном станке нарезаются червяки, имеющие модульный, или питчевый шаг.

3. Диаметры резьбы. Различают три диаметра резьбы: наружный, внутренний и средний.

Наружным диаметром резьбы называется диаметр цилиндра, описанного около резьбовой поверхности. Внутренним диаметром резьбы называется диаметр цилиндра, вписанного в резьбовую поверхность. Средним диаметром резьбы называется диаметр цилиндра, соосного с резьбой, образующие которого делятся боковыми сторонами профиля на равные отрезки.

4. Угол подъема резьбы - это угол, образованный направлением резьбового выступа резьбы с плоскостью, перпендикулярной к его оси.

5. Правая и левая резьбы. По направлению витка различают правые (рис.2, б) и левые (рис.2, а) резьбы.

Рис.2. Правые и левые резьбы.

Если подъем резьбы винта, положенного на ладонь правой руки, совпадает с направлением отогнутого большого пальца, эта резьба правая. Совпадение подъема резьбы с направлением отогнутого большого пальца левой руки указывает, что данная резьба левая.

На винт с правой резьбой гайка навертывается при вращении вправо (по часовой стрелке), на винт с левой резьбой при вращении влево (против часовой стрелки).

6. Системы резьб. В машиностроении приняты следующие системы резьб, различающиеся прежде всего по профилю: треугольные (метрическая, дюймовая и трубная), трапецеидальные, прямоугольные, упорные и круглые.

Наиболее распространенными являются метрические резьбы с крупным (крепежная) и мелким шагом. У всех метрических резьб угол профиля равен 60°. Шаг метрических резьб измеряется в миллиметрах. Между впадиной профиля резьбы болта и вершиной профиля резьбы гайки всегда имеется зазор. Имеется зазор и между вершиной профиля резьбы болта и впадиной профиля резьбы гайки. Метрической резьбой снабжаются детали (болты, гайки, винты, шпильки и т. д.), предназначенные для соединения частей машин. Этой резьбой пользуются также, как способом непосредственного соединения частей машин (посадка на резьбе различных рукояток, масленок и т. д.).

Угол профиля дюймовой резьбы равен 55°. Шаг дюймовой резьбы выражается числом витков на один дюйм. Дюймовая резьба имеет зазоры по вершинам и впадинам. Дюймовую резьбу имеют детали некоторых импортных машин, станков и т. д., поэтому детали с такой резьбой изготовляются главным образом при ремонте.

Трубная резьба имеет угол профиля 55°, причем вершина и впадина профиля закруглены. Трубная резьба не имеет зазоров по вершинам и впадинам и обеспечивает водонепроницаемость. Этой резьбой снабжаются главным образом водо- и газопроводные трубы и различные детали (муфты, угольники и т. д.), применяемые для соединения этих труб.

Профиль трапецеидальной резьбы - это трапеция с углом, равным 30°. Профиль резьбы образован прямыми линиями, с небольшими закруглениями углов у впадин и вершин. Шаг трапецеидальных резьб измеряется в миллиметрах. Трапецеидальные резьбы имеют зазоры. Существуют крупная, нормальная и мелкая трапецеидальные резьбы. Трапецеидальную резьбу применяют на винтах, используемых для преобразования вращательного движения одной детали (например, ходового винта токарного станка) в поступательное движение другой (суппорта).

Профиль прямоугольной резьбы - это в большинстве случаев квадрат со сторонами, равными половине шага; эта резьба не имеет зазоров. Прямоугольная резьба применяется так же, как трапецеидальная, на различных винтах, передающих движение. Она не стандартизована и встречается редко, так как почти полностью вытеснена трапецеидальной.

В упорной резьбе соприкосновение винта и гайки в упорной резьбе происходит между сторонами, воспринимающими нагрузку, а также между вершинами витков винта и впадин гайки. По остальным участкам профиля имеется зазор. Упорная резьба делается на муфтах трубопроводов, соединяющих компрессоры с резервуарами со сжатым под сильным давлением воздухом, а также на винтах гидравлических прессов, домкратов и т. д.

Настройка станка для нарезания резьбы

Для нарезания резьбы на токарном станке необходимо, чтобы в то время, когда нарезаемая деталь делает полный оборот, резец перемещался на величину шага (хода) однозаходной и хода многозаходной нарезаемой резьбы.

После нескольких проходов резца, углубляемого перед каждым проходом в металл детали, на поверхности последней получаются винтовая канавка и винтовой выступ, образующие резьбу.

Метрическая резьба – это винтовая нарезка на наружных или внутренних поверхностях изделий. Форма выступов и впадин, которые ее формируют, представляет собой равнобедренный треугольник. Метрической эту резьбу называют потому, что все ее геометрические параметры измеряются в миллиметрах. Она может наноситься на поверхности как цилиндрической, так и конической формы и использоваться для изготовления крепежных элементов различного назначения. Кроме того, в зависимости от направления подъема витков резьба метрического типа бывает правая или левая. Помимо метрической, как известно, есть и другие типы резьбы – дюймовая, питчевая и др. Отдельную категорию составляет модульная резьба, которую используют для изготовления элементов червячных передач.

Основные параметры и сферы применения

Наиболее распространенной является метрическая резьба, наносимая на наружные и внутренние поверхности цилиндрической формы. Именно она чаще всего используется при изготовлении крепежных элементов различного типа:

  • анкерных и обычных болтов;
  • гаек;
  • шпилек;
  • винтов и др.

Детали конической формы, на поверхность которых нанесена резьба метрического типа, требуются в тех случаях, когда создаваемому соединению необходимо придать высокую герметичность. Профиль метрической резьбы, нанесенной на конические поверхности, позволяет формировать плотные соединения даже без использования дополнительных уплотнительных элементов. Именно поэтому она успешно применяется при монтаже трубопроводов, по которым транспортируются различные среды, а также при изготовлении пробок для емкостей, содержащих жидкие и газообразные вещества. Следует иметь в виду, что профиль резьбы метрического типа один и тот же на цилиндрических и на конических поверхностях.

Виды резьб, относящихся к метрическому типу, выделяют по ряду параметров, к которым относятся:

  • размеры (диаметр и шаг резьбы);
  • направление подъема витков (левая или правая резьба);
  • расположение на изделии (внутренняя или наружная резьба).

Есть и дополнительные параметры, в зависимости от которых метрические резьбы разделяются на различные виды.

Геометрические параметры

Рассмотрим геометрические параметры, которые характеризуют основные элементы резьбы метрического типа.

  • Номинальный диаметр резьбы обозначается буквами D и d. При этом под буквой D понимают номинальный диаметр наружной резьбы, а под буквой d – аналогичный параметр внутренней.
  • Средний диаметр резьбы в зависимости от ее наружного или внутреннего расположения обозначается буквами D2 и d2.
  • Внутренний диаметр резьбы в зависимости от ее наружного или внутреннего расположения имеет обозначения D1 и d1.
  • Внутренний диаметр болта используется для расчета напряжений, создаваемых в структуре такого крепежного изделия.
  • Шаг резьбы характеризует расстояние между вершинами или впадинами соседних резьбовых витков. Для резьбового элемента одного и того же диаметра различают основной шаг, а также шаг резьбы с уменьшенными геометрическими параметрами. Для обозначения этой важной характеристики используют букву P.
  • Ход резьбы представляет собой расстояние между вершинами или впадинами соседних витков, сформированных одной винтовой поверхностью. Ход резьбы, которая создана одной винтовой поверхностью (однозаходная), равен ее шагу. Кроме того, значение, которому соответствует ход резьбы, характеризует величину линейного перемещения резьбового элемента, совершаемого им за один оборот.
  • Такой параметр, как высота треугольника, который формирует профиль резьбовых элементов, обозначается буквой H.

Таблица значений диаметров метрической резьбы (все параметры указаны в миллиметрах)

Значения диаметров метрической резьбы (мм)

Полная таблица метрических резьб согласно ГОСТ 24705-2004 (все параметры указаны в миллиметрах)

Полная таблица метрических резьб согласно ГОСТ 24705-2004

Основные параметры резьбы метрического типа оговариваются несколькими нормативными документами.
ГОСТ 8724

Этот стандарт содержит требования к параметрам шага резьбы и ее диаметра. ГОСТ 8724, действующая редакция которого вступила в силу в 2004 году, является аналогом международного стандарта ISO 261-98. Требования последнего распространяются на метрические резьбы диаметром от 1 до 300 мм. По сравнению с этим документом, ГОСТ 8724 действует для более широкого диапазона диаметров (0,25–600 мм). В настоящий момент актуальна редакция ГОСТа 8724 2002, вступившего в действие в 2004 году вместо ГОСТа 8724 81. Следует иметь в виду, что ГОСТ 8724 регламентирует отдельные параметры метрической резьбы, требования к которой оговаривают и другие стандарты резьб. Удобство использования ГОСТа 8724 2002 (как и других подобных документов) состоит в том, что вся информация в нем содержится в таблицах, в которые включены метрические резьбы с диаметрами, находящимися в вышеуказанном интервале. Требованиям данного стандарта должна соответствовать как левая, так и правая резьба метрического типа.

ГОСТ 24705 2004

Данный стандарт оговаривает, какие должна иметь резьба метрическая основные размеры. ГОСТ 24705 2004 распространяется на все резьбы, требования к которым регламентируются ГОСТом 8724 2002, а также ГОСТом 9150 2002.

ГОСТ 9150

Это нормативный документ, в котором оговорены требования к профилю метрической резьбы. ГОСТ 9150, в частности, содержит данные о том, каким геометрическим параметрам должен соответствовать основной резьбовой профиль различных типоразмеров. Требования ГОСТа 9150, разработанного в 2002 году, как и двух предыдущих стандартов, распространяются на метрические резьбы, витки которых поднимаются слева вверх (правого типа), и на те, винтовая линия которых поднимается влево (левого типа). Положения данного нормативного документа тесно перекликаются с требованиями, которые приводит ГОСТ 16093 (а также ГОСТы 24705 и 8724).

ГОСТ 16093

Данный стандарт оговаривает требования к допускам на метрическую резьбу. Кроме того, ГОСТ 16093 предписывает, как должно осуществляться обозначение резьбы метрического типа. ГОСТ 16093 в последней редакции, которая вступила в действие в 2005 году, включает в себя положения международных стандартов ISO 965-1 и ISO 965-3. Под требования такого нормативного документа, как ГОСТ 16093, подпадает как левая, так и правая резьба.

Стандартизируемым параметрам, указанным в таблицах резьб метрического типа, должны соответствовать размеры резьбы на чертеже будущего изделия. Выбор инструмента, при помощи которого будет выполняться ее нарезка, должен быть обусловлен данными параметрами.

Правила обозначения

Для обозначения поля допуска отдельного диаметра метрической резьбы используется сочетание цифры, которая указывает на класс точности резьбы, и буквы, определяющей основное отклонение. Поле допуска резьбы также должно обозначаться двумя буквенно-цифровыми элементами: на первом месте – поле допуска d2 (средний диаметр), на втором – поле допуска d (наружный диаметр). В том случае, если поля допусков наружного и среднего диаметров совпадают, то в обозначении они не повторяются.

По правилам первым проставляется обозначение резьбы, затем следует обозначение поля допуска. Следует иметь в виду, что шаг резьбы в маркировке не обозначается. Узнать данный параметр можно из специальных таблиц.

В обозначении резьбы также указывается, к какой группе по длине свинчивания она относится. Всего существует три таких группы:

  • N – нормальная, которая не указывается в обозначении;
  • S – короткая;
  • L – длинная.

Буквы S и L, если они необходимы, идут за обозначением поля допуска и отделяются от него длинной горизонтальной чертой.

Обязательно указывается и такой важный параметр, как посадка резьбового соединения. Это дробь, формируемая следующим образом: в числителе проставляется обозначение внутренней резьбы, относящееся к полю ее допуска, а в знаменателе – обозначение поля допуска на резьбу наружного типа.

Поля допусков

Поля допусков на метрический резьбовой элемент могут относиться к одному из трех типов:

  • точные (с такими полями допуска выполняется резьба, к точности которой предъявляются высокие требования);
  • средние (группа полей допуска для резьбы общего назначения);
  • грубые (с такими полями допуска выполняют резьбонарезание на горячекатаных прутках и в глубоких глухих отверстиях).

ОБЩИЕ СВЕДЕНИЯ О РЕЗЬБОВЫХ СОЕДИНЕНИЯХ

Резьбовые соединения являются наиболее распространенными разъемными соединениями. Их создают болты, винты, шпильки, гайки и другие детали, снабженные резьбой. Основным элементом резьбового соединения является резьба, которая получается путем прорезания на поверхности деталей канавок по винтовой линии. Винтовую линию образует гипотенуза прямоугольного треугольника при навертывании на прямой круговой цилиндр (рис. 3.1).

Если плоскую фигуру (треугольник, трапецию и т.п.)перемещать по винтовой линии так, чтобы её плоскость при движении всегда проходила через ось винта, то эта фигура образует резьбу соответствующего профиля (рис. 3.2)

Классификация резьб

В зависимости от формы поверхности, на которой образуется резьба, различают цилиндрические и конические резьбы (Рис. 3.3).

В зависимости от формы профиля резьбы делятся на пять основных типов: треугольные (рис.3.4, а), упорные (рис. 3.4, б), трапецеидальные (рис. 3.4,в), прямоугольные (рис. 3.4, г) и круглые (рис, 3.4, д).

В зависимости от направления винтовой линии резьбы бывают правые и левые (рис. 3.5). У правой резьбы винтовая линия поднимается слева вверх направо. Левая резьба имеет ограниченное применение.

В зависимости от числа заходов резьбы делятся на однозаходные (рис. 3.5,б) и многозаходные (рис. 3.5,а).

Многозаходные резьбы получаются при перемещении по винтовым линиям нескольких рядом расположенных профилей. 3аходность резьбы легко определить с торца винта по числу сбегающих витков. Как правило, все крепежные резьбовые детали имеют однозаходную резьбу.

В зависимости от назначения резьбы делятся на крепёжные и для передачи движения. Крепежные резьбы применяют в резьбовых соединениях; они имеют треугольный профиль, который характеризуется:

а) большим трением, предохраняющим резьбу от само отвинчивания; б) высокой прочностью; в) технологичностью.

Резьбы для передачи движения применяются в винтовых механизмах и имеют трапецеидальный (реже прямоугольный) профиль, который характеризуется меньшим трением.



Геометрические параметры резьбы

Основными геометрическими параметрами цилиндрической резьбы являются (рис. 3.6):

d - наружный диаметр номинальный диаметр резьбы;

d 1 -внутренний диаметр резьбы;

d 2 - средний диаметр резьбы, то есть диаметр воображаемого цилиндра, на котором ширина витка равна ширине впадины;

S-шаг резьбы, т. е. расстояние между одноименными сторонами двух соседних витков в осевом направлении;

S 1 -ход резьбы, т. е. расстояние между одноименными сторонами одного и того же витка в осевом направлении (см. рис. 3.5);

для однозаходной резьбы S 1 =S,

для многозаходных резьб S1=zS, где z-число заходов;

α - угол профиля резьбы (см. рис. 3.4);

λ - угол подъема резьбы (см. рис. 3.1), т. е. угол, образованный винтовой линией по среднему диаметру резьбы и плоскостью, перпендикулярной к оси винта;

Основные типы резьб

Метрическая резьба (см. рис. 3.6). Это наиболее распространенная из крепежных резьб. Имеет профиль в виде равностороннего треугольника, следовательно, α = 60°. Вершины витков и впадин притупляются по прямой или дуге, что уменьшает кон­центрацию напряжений, предохраняет резьбу от повреждений, а также удовлетворяет нормам техники безопасности. Радиальный зазор в резьбе делает ее не герметичной.

По ГОСТ 9150-59 метрические резьбы делятся на резьбы с крупным и мелким шагом (см. табл. 3.1) В качестве основной крепежной применяют резьбу с крупным шагом, так как она менее чувствительна к износу и неточностям изготовления. Резьбы с мелким шагом различаются между собой коэффициентом измельчения, т. е. отношением крупного шага к соответствующему мелкому шагу (рис. 3,7). Резьбы с мелким шагом меньше ослабляют деталь и характеризуются повышенным самоторможением, так как при малом шаге угол подъема винтовой линии λ мал (см. формулу 3.1). Мелкие резьбы применяются в резьбовых соединениях, подверженных переменным и знакопеременным нагрузкам, а также в тонкостенных деталях (на деталях из пластмасс метрическая резьба изготовляется по ГОСТ 11709-66.).

Дюймовая резьба (1 дюйм равен 25,4 мм). (рис. 3.8). Имеет профиль в виде равнобедренного треугольника с углом при вершине α=55°. Применяется только при ремонте деталей импортных машин. Изготовляется по ОСТ НКТП 1260.

Трубная резьба . Трубная цилиндрическая резьба (рис. 3.9) является мелкой дюймовой резьбой, но с закруглёнными выступами и впадинами. Отсутствие радиальных зазоров делает резьбовое соединение герметичным. Применяется для соединения труб. Изготовляется по ГОСТ 6357-52.

Высокую плотность соединения дает трубная коническая резьба (ГОСТ 6211-69).

Трапецеидальная резьба (рис. 3.1.). Это основная резьба в пе­редаче винт-гайка (см. ниже). Ее профиль равнобочная тра­пеция с углом α = 30°. Характеризуется небольшими потерями на трение, технологична. К.п.д. выше, чем для резьб с треугольным профилем. Применяется для передачи реверсивного движения под нагрузкой (ходовые винты станков и т. п,) Размеры резьбы приведены в табл. 3.2.

Упорная резьба (рис. 3.11). Имеет профиль в виде не равнобочной трапеции с углом 27°. Для возможности изготовления резьбы фрезерованием рабочая сторона профиля имеет угол наклона 3°. К.п.д. выше, чем у трапецеидальной резьбы. Закругление впадин повышает усталостную прочность винта. Применяется в передаче винт-гайка при больших односторонних осевых нагрузках (грузовые винты прессов, домкратов и т. д.). Изготовляется по ГОСТ 10177-62.

Таблица 3.2

Резьба трапецеидальная по ГОСТ 9484-60 (извлечениe)

Размеры в мм по рис. 3.10

Наружный диаметр д Шаг резьбы S Средний диаметр d 2 Внутренний диаметр д,
30,5 28,5
2i
38,5 36,5
48,5 46,5
58,5 56,5

Прямоугольная резьба (рис. 3.12). Профиль резьбы квадрат. Из всех резьб имеет самый высокий к.п.д., так как угол профиля резьбы, α=0. Обладает пониженной прочностью. При износе образуются осевые зазоры, которые трудно устранить. Имеет ограниченное применение в малонагруженных передачах винт - гайка.

Круглая резьба (рис. 3.13). Профиль резьбы состоит из дуг, сопряжённых короткими прямыми линиями. Угол профиля α=30 о. Резьба характеризуется высокой динамической прочностью. Стандарта нет. Имеет ограниченное применение при тяжелых условиях эксплуатации в загрязненной среде. Технологична при изготовлении отливкой, накаткой и вылавливанием на тонкостенных изделиях.

ЛЕКЦИЯ 3

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

Резьбовые соединения - это самый распространенный вид разъемных со­единений. Они осуществляются болтами, винтами, шпильками, гайками и т. п.

Основным элементом соединения является резьба, образуемая нареза­нием или накаткой на детали по винтовой линии (рис. 5.1.1, 5.1.2).

Рисунок. 5.1.1 - Винтовая линия резьбы

Угол подъема резьбы

Резьбы классифицируются по форме поверхности , на которой образуется резьба: цилиндрические и конические .

По форме профиля различают типы:

треугольные (рис. 5.1.3, а );

упорные (рис. 5.1.3, б );

трапецеидальные (рис. 5.1.3, в );

прямоугольные (рис5.1.3, г );

круглые (рис. 5.1.3, д ).

При подъеме винтовой линии слева на право - резьба правая, у левой - справа налево.

Резьбы делятся на многозаходные и однозаходные (рис. 5.1.4).

По назначению различают:

крепежные:

крепежно-уплотняющие;

ходовые (для преобразования движения).

Рисунок 5.1.2– Образование резьбы

Крепежно-уплотняющие резьбы применя­ют для соединения деталей, требующих герме­тичности (рис. 5.1.6).

Крепежные резьбы чаще однозаходные. Резь­бы для преобразования движения (вращательное в поступательное и наоборот) применяют в вин­товых механизмах (в ходовых и грузовых винтах). Они имеют трапецеидальный профиль, реже - прямоугольный.

Рисунок 5.1.3- Формы профиля резьбы:

а - треугольная; б - упорная; в - трапецеидальная; г - прямоугольная; д - круглая

Достоинства резьбовых соединений:

простота конструкции, технологичность;

удобство сборки, разборки;

высокая нагрузочная способность;

малые габариты соединений;

стандартизация изделий.

Рисунок 5.1.4- Виды резьб

а - трехзаходная; б - однозаходная

Недостаток: наличие резьбы создает концентрацию напряжений на по­верхности деталей, что снижает их прочность при переменных напряжениях.

Геометрические параметры резьбы

Основными параметрами цилиндрической резьбы являются:

d - номинальный диаметр (нагруженный диаметр резьбы винта);

d l - внутренний диаметр резьбы гайки;

d 3 - внутренний диаметр резьбы винта;

d 2 - средний диаметр резьбы, на котором ширины профилей винта и гайки совпадают;

р - шаг резьбы, т. е. расстояние между одноименными сторонами со­седних профилей;

р h - ход резьбы, т. е. расстояние между одноименными сторонами од­ного и того же витка в осевом направлении (рис. 5.1.4, а, б ).

Для однозаходной резьбы p h = р .

Для многозаходной резьбы p h = z∙р , где z - число заходов.

Ход равен пути перемещения винта вдоль своей оси при повороте на один оборот в неподвижной гайке;

α - угол профиля резьбы; наиболее распространенной является метри­ческая резьба, для которой α = 60°.

у - угол наклона боковой стороны профиля (рис. 5.1.5);

у - угол подъема резьбы (рис. 5.1.1);

Основные типы резьб. Метрическая резьба - изготовляется по стандарту с крупным и мелким шагом (табл. 1.12). Угол наклона у боковой стороны профиля дает возмож­ность самоторможения и обеспечивает восприятие больших осевых сил (рис. 5.1.5). Мелкие резьбы применяют в соединениях, работающих при пе­ременных нагрузках.

Рисунок 5.1.5– Метрическая резьба

Дюймовая резьба имеет профиль равно­бедренного треугольника с углом при вер­шине α = 55°. Число витков задают на дюйм (1 дюйм = 25,4 мм). В РФ используется при ремонта импортного оборудования.

Трубная резьба имеет профиль равнобед­ренного треугольника с закругленными вы­ступами и впадинами (рис. 5.1.6).

Рисунок 5.1.6– Трубная резьба

Трапецеидальная резьба - основная в передаче винт-гайка. Профиль - равнобочная трапеция, угол профиля α = 30°, угол наклона боковой стороны = 15° (рис. 5.1.7). Характеризуется технологичностью, малыми потерями на трение, КПД выше, чем у резьб треугольного профиля. Применяется для реверсивных передач под нагруз­кой (домкраты, прессы, ходовые винты станков).

Упорная резьба (рис. 5.1.8). Профиль - неравнобочная трапеция с = 3°. Применяют в передаче винт-гайка при больших односторонних нагрузках (винты домкратов, прессов).


Рисунок 5.1.7– Трапециедальняя резьба Рисунок 5.1.8– Упорная резьба

Прямоугольная резьба (рис. 5.1.9). Профиль резьбы - квадрат, = 0°. Имеет самый высо­кий среди резьб КПД, но затруднительна в изготовлении. Затруднение вызваны тем, что эту резьбу нельзя фрезеровать и шлифовать, т. к. угол профиля α = 0°. Не стандартизиро­вана. Применение ограниченно (малонагруженные передачи винт-гайка).

Рис. 5.1.9. Прямоугольная резьба

Таблица 1.12 - Основные размеры метрической резьбы, мм (по ГОСТ 9150-81. ГОСТ 8724-81

d, D - наружные диаметры соответственно наружной резьбы (болта) и внутренней резьбы (гайки);

d 2 , D 2 - средние диаметры соответственно болта и гайки;

d 1 , D 1 - внутренние диаметры соответствен­но болта и гайки;

d 3 - внутренний диаметр болта по дну впа­дины;

р - шаг резьбы;

Н - высота исходного треугольника.

Номинальные значения диаметров резьбы должны соответствовать указанным на чертеже и в таблице.

Шаг резьбы р

Диаметр резьбы

наружный

внутренний

внутренний по дну впадины

С крупным шагом

Продолжение табл. 1.12

Диаметр резьбы

Шаг резьбы р

наружный

внутренний

внутренний по дну впадины

Конструктивные формы резьбовых соединений. Наибольше распространение среди резьбовых деталей получили кре­пежные болты, шпильки, винты, гайки.

Соединение болтом (рис. 5.1.10, а ) применяют для деталей сравнительно малой толщины, а также при многократной разработке и сборке соедине­ний. При большой толщине соединяемых деталей предпочтительны шпильки (рис. 5.1.10, в ).


Рисунок 5.1.10. Виды резьбовых соединений: Рисунок 5.1.11. Формы головок болтов:

а - соединение болтом; б - соединение вин- а - шестигранные; б, е - полукруглые; том; в - соединение шпилькой е, ж - цилиндрические; г, д - по

Болты и крепежные винты различают по форме головок, форме стержня, а также по степени точности изготовления (рис. 5.1.11).

Чаще применяют болты и винты с шестигранной головкой, так как они позволяют приложить больший момент завинчивания и получить большие силы затяжки деталей.

Гайки различают в зависимости от формы, высоты и точности изготовле­ния (рис. 1.46, 1.47).

Шайбы подкладывают под гайки увеличивая этим опорную поверх­ность и предохраняя детали от задиров. Существуют шайбы пружинные, стопорные и др. применяемые для предохранения резьбовых деталей от самоотвинчивания.


Рисунок. 5.1.12 - Виды гаек: Рисунок 5.1.13 - Гайки шестигранные:

а - гайка круглая, б - гайка-барашек а - нормальной высоты; б - высокая; в -

узкие; г - корончатые

КПД винтовой пары. При переменных нагрузках условие самоторможения не наблюдается, по­этому применяют различные способы стопорения.

КПД винтовой пары определяется как отношение полезной работы W п на винте к затраченной W З за один оборот винта или гайки.

где - угол подъема резьбы;- приведенный угол трения,

f " - приведенный коэффициент трения (рис. 5.1.1).

Значение КПД имеет смысл для передачи винт-гайка. Для повышения КПД применяют многозаходную резьбу с углом подъема до 40°, а также антифрикционные материалы (бронзу и др.), вводят смазочные материалы.

Классы прочности и материалы резьбовых изделий. Стальные болты, шпильки и винты изготовляют 12 классов прочности, которые обозначают двумя числами, разделенными точкой: 3.6, 4.6, 4.8, 5.6, 5.8, 6.6, 6.8 и т. д. Первое число, умноженное на 100, указывает мини­мальное значение временного сопротивления в Н/мм 2 (МПа); произве­дение чисел, умноженное на 10, определяют предел текучести в Н/мм 2 .

Класс прочности деталей выбирается в зависимости от степени нагружен­ности. При малой нагруженности принять 5.6; 6.6 - для средней нагруженности; 12.9 - для высокой нагруженности.

Таблица 1.13 - Классы прочности и механические характеристики болтов, гаек (выборка)

Класс прочности

Временное сопротивление ств, Н/мм 2 (МПа)

Предел текучести от, Н/мм 2 (МПа)

Марка стали

20, СтЗкпЗ

Для стандартных крепежных резьбовых деталей общего назначения применяют низко- и среднеуглеродистые стали по ГОСТ 1759.4-87.

Таблица 1.14 - Механические характеристики марок сталей

Марка стали

Предел прочности , МПа

Предел текучести , МПа

Предел выносли­вости МПа

Марка стали

Предел прочности , МПа

Предел текучести , МПа

Предел выносли­вости , МПа

Углеродистые стали 10...35 являются дешевыми и позволяют изготов­лять болты, винты, гайки методом штамповки с последующей накаткой резьбы. Легированные стали ЗОХ, 30ХГСА применяют при высоких нагруз­ках на детали, испытывающих переменные и ударные нагрузки.

Значения допускаемых напряжений определяют в зависимости от предела текучести , так как в большинстве случаев резьбовые изделия изготовля­ют из пластичных материалов.

При расчете на растяжение: , (- см. табл. 1.14).

При расчете на срез: ср = 0,4 .

При расчете на смятие: см = 0,8 .

Значения допускаемого коэффициента запаса прочности зависят от характера нагрузки, качества монтажа (контролируемая или неконтро­лируемая затяжка), материала крепежных деталей из углеродистых сталей:

для незатянутых соединений = 1,5...2 (в общем машинострое­нии);

для грузоподъемного оборудования = 3...4;

для затянутых соединений = 1,3...2, (при контролируемой затяж­ке) и- при неконтролируемой затяжке.

Типовые схемы расчета болтов

Рисунок 5.1.14 – Нагружение стержня винта растягивающей силой

Опыт эксплуатации машин, аппаратов показал, что отказы соединений обычно происходят из-за разруше­ния резьбовых изделий и разгерметизации стыков. Как правило происходит поломка болтов и шпилек по резь­бовой части. Реже встречаются поломки болтов под го­ловкой и срез резьбы в гайке. Рассмотрим некоторые случаи нагружения болтов (винтов).

1. Стержень винта нагружен только внешней растя­гивающей силой F (pиc. 5.1.14). Опасным является сечение резьбы по диаметру d 1 - внутренний диаметр резьбы.

Условие прочности при растяжении:

Расчетный диаметр d 1 - согласовать со стандартом и записать найденный номинальный диаметр резьбы.

Рисунок 5.1.15

2. Болт затянут (кре­пление крышек корпусов редукторов, крепление герме­тичных крышек). Болт затягивается осевой силой F 0 и закручивается моментом сил трения в резьбе (рис. 5.1.15).

Напряжение растяжения от силы F зат :

где d paсч = d - 0,94p ;

d и р - наружный диаметр резьбы и шаг резьбы;

F зат - на практике определяют:

F зат = К зат F , где

К зат - коэффициент затяжки по условию нераскрытия стыка.

При постоянной нагрузке К зат = 1,25...2.

При переменной нагрузке К зат = 2,5...4.

При металлической фасонной прокладке К зат = 2...3.

При металлической плоской прокладке К зат = 3...5.

Напряжение кручения от трения в резьбе

где - угол подъема резьбы;

Приведенный угол трения.

Эквивалентное напряжение по теории энергии формоизменения

Подставляя выражение ив формулуи принимая для стан­дартных болтов с метрической резьбой= 2°30",d 2 /d l = 1,12 и f = 0,15; чему соответствует = 8°40", получим.

Загрузка...
Top