Откуда берутся фосфаты в сточных водах. Очистка сточных вод от фосфорных соединений

На рынке бытует мнение, что именно фосфаты «заставляют» работать комплекс ПАВ в моющем растворе и, чем их больше, тем эффективнее средство. Однако мировая химическая промышленность не стоит на месте и на сегодняшний день предлагает разумные альтернативы. Таким образом, постановка фосфатов во главу угла - ОПАСНОЕ ЗАБЛУЖДЕНИЕ.

Прокомментировать данный вопрос мы попросили Заместителя директора ООО «ТЕКСКЕПРО» Веру Батурину:

«Так как производство сырья для отечественных ПАВ разрушено, большое его количество поступает по импорту. Во многих случаях заключения на него по экологической безопасности, представляемые зарубежными фирмами-изготовителями, далеки от истины. Нередко под видом «биологически мягких» ПАВ нам стараются сбыть заведомо «биологически жесткие» продукты, не находящие применения в родных, промышленно развитых, пенатах. Составляющей ЭТИХ стиральных порошков, которая не претерпела изменений за всю их эволюцию, являются именно они - фосфаты. Проблема в том, что фосфаты, с современной точки зрения - нежелательный компонент. В жесткой воде моющая способность СМС резко снижается. Фосфаты - самый дешевый умягчитель воды. Этим оправдывается необходимость присутствия фосфатов в составе стиральных средств.

Обратившись к Большой Советской Энциклопедии, мы находим фосфаты в списке ингредиентов таких моющих средств советского производства, как «Эра», «Новость» и «Лотос». Было бы очень странно, если бы современные производители стирального порошка оставались на уровне производства застойных времен. Нежелательность и даже вред использования триполофосфатов связаны с проблемой эвтрофикации. Под этим термином понимают излишнее зарастание водоемов из-за чрезмерного поступления в воду биогенных элементов - азота и фосфора. Система очистки бытовых сточных вод не обеспечивает удаление фосфатов, попадающих из порошка вместе с водой в канализацию. Так фосфаты оказываются в водоемах и содействуют превращению рек в болота. Первый шаг решения проблемы - ограничение содержания фосфатов в СМС, второй - применение заменителей, более безвредных для здоровья и окружающей среды. Третьим шагом является внедрение такой системы очистки сточных вод, которая обеспечит удаление фосфатов. Следует отметить, что у нас значительная часть коммунальных стоков попадает в отечественные водоемы без очистки - очистными сооружениями оснащены в стране лишь около 30% населенных пунктов.

Но на Западе те же самые производители стиральных порошков уже давно нашли средства с аналогичными свойствами и без тех побочных эффектов, которыми обладает триполифосфат натрия. Существуют экологически безопасные, полностью биоразлагаемые моющие средства, доступные и в нашей стране. Ни один серьезный западный производитель уже давно не вкладывает средства, силы и знания в разработку стиральных препаратов на основе фосфатов, просто потому, что это никому не нужно в нормальных развитых странах.

Что должно отличать современные моющие средства от их предыдущего поколения? Каким они должно быть?

По нашему глубокому убеждению моющие средства, в первую очередь, должны быть эффективными не в ущерб окружающей среде, т.е. не содержать фосфатов, цеолитов, и других экологически вредных комплексообразователей, и, не в последнюю очередь - экономичными!

Исследовательский центр Кройслер (Chem. Fabrik KREUSSLER & Co., GmbH), с которым сотрудничает наша компания, создал систему постоянного контроля качества, сертифицированную на соответствие ISO 9001, которая гарантирует постоянное высочайшее качество всех поставляемых химикатов и их соответствие требованиям - IQNet, DIN EN ISO 9001, DQS.

Например, TREBON SI - высококонцентрированное моющее средство, в своей структурной концепции с многослойными силикатами занимает отдельное место. Он имеет способность связывать жесткость воды и ионы тяжелых металлов, стабилизировать уровень pH на оптимальном уровне и создавать щелочность для стирки. Целью создания сверх-компактной формулы TREBON SI позволило использовать его в малых количествах, что приводит к значительному увеличению производительности на 1 кг белья, и в дополнение, к сокращению транспортных расходов по доставке химикатов.

Процессы стирки с использованием препаратов серии «ТРЕБОН», «ДЕРВАЛ» и «ОТТАЛИН» обеспечивают ВЫСОКУЮ ЭФФЕКТИВНОСТЬ ОТСТИРОВАНИЯ МНОГОЧИСЛЕННЫХ И СЛОЖНЫХ ЗАГРЯЗНЕНИЙ, максимально щадящий профиль щелочности рН и термохимическую дезинфекцию текстиля (без применения хлора) с временным воздействием в 10 мин и температурой 60С.

Данные показатели являются самыми экономичными и эффективными из принятых на рынке (подтверждено исследованием института им. Роберта Коха, Берлин) как по временным, так и по температурным режимам, обеспечивая максимальную безопасность при дальнейшем использовании текстиля. Все эти препараты без фосфатов и цеолитов.»

Экология/4 Промышленнная экология и медицина труда

к. т. н., Келль Л. С.

ГУП Водоканал СПб

Внедрение технологии биологической дефосфотации UCT K .

Фосфор, содержащийся в сточных водах является основным биогенным элементом, вызывающим антропогеннуюэфтрофикацию природных водных экосистем. В частности, увеличение содержания фосфора в водных экосистемах вызывает бурное развитие (цветение) сине-зеленых водорослей, многие виды которых являются азотфиксирующими организмами и поэтому их развитие лимитируется именно содержанием фосфора в растворе. В свою очередь “цветение” сине-зелёных за счёт выделения токсинов и создания аноксидных зон ведёт к деградации и гибели водных экосистем (Одум, 1975г.).

К настоящему времени разработаны и достаточно широко применяются при очистке сточных вод технологические методы биологической дефосфотации. Принцип биоудаления фосфора основан на жизнедеятельности микроорганизмов, в частности a cine to bacter, которые способны аккумулировать больше фосфора, чем нужно на прирост - так называемое «жадное поглощение». Acine to bacter (фосфатаккумулирующие организмы – ФАО) обычно присутствуют в активном иле, но в незначительных количествах. Чтобы эти микроорганизмы начали играть свою полезную роль, необходимо обеспечить их низкомолекулярными летучими жирными кислотами (ЛЖК), которые служат субстратом для них, и создать условия, при которых они способны использовать ЛЖК эффективнее других микроорганизмов, находящихся в биценозе.

Для увеличения содержания ЛЖК в поступающей на биологическую очитку воде проводят процесс сбраживания (ацидофикации) сырого осадка. Затем сточные воды, обогащенные ЛЖК, подают в процесс биологической очистки, предусматривающий анаэробную зону, где ФАО способны потреблять ЛЖК, используя при этом энергию полифосфатных связей. (Баженов, Денисов 2009 http://www.pump.ru/information/publications/Articles/EPR%202-2009%20Bazhenov.pdf /)

Одним из наиболее распространенных технологических решений биологической дефосфотации сточных вод являетсяпроцесс UCT (University of Cape Town ), а также его модификации.(См. рис.).

Рис. Технологическая схема UCT -процесса.

Данный технологический процесс имеет следующие особенности: возвратный активный ил перекачивается из вторичных отстойников в аноксидную зону, при этом кроме нитратного рецикла осуществляется внутренняя рециркуляция ила из аноксидной зоны в анаэробную зону. Что позволяет избегать попадания свободного и связанного кислорода (нитратов) в анаэробную зону (Данилович и др.).

Однако, применяющиеся способы биологической дефосфотации позволяют удалять общий фосфор при биологической очистке бытовых сточных вод лишь до концентрации 1 мг/л. Более глубокое удаление фосфора достигается применением химических коагулянтов (Дегремон, 2007 г.).

Для более глубокого биологического удаления фосфора и азота из раствора, процесс сбраживания (ацидофикации) осадка на ЛЖК и процессихаккумулирования ФАО ведут совместно в зонах “дозревания” (технология UCT K - University of Cape Town - Kell ).(Келль, 2010; патент)

На Сестрорецкой станции - СКС удаление фосфора из хозбытовых сточных сточных вод производится комбинированным методом – биологическим и химическим. Для биологического удаления используется технология UCT (University of Cape Town ). Также применяется химическое удаление – сульфат железа Ферикс-3, (10% водный раствор). При этом доза реагента составляет в среднем 35г/м. куб.(Беляев и др. 2008 г. ).

В 1У кв. 2010г. проведены работы по внедрению технологии UCT K на СКС. С этой целью в первых числах октября были организованы зоны“дозревания” в каждой из двух работающих секций аэротенка (см. фото 1).


Фото 1. Зона “дозревания” в секции аэротенка.

Среднедекадные показатели работы сооружений за контрольный (июль – сентябрь) и опытный (октябрь-декабрь) периоды приведены в таблице 1.

Таблица 1. Показатели работы Сестрорецкой станции во II полугодии 2010 г.

Фосфор фосфатов

Фосфор общий

Азот нитратов

Азот аммонийный

Азот общий

Ферикс - 3

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

г/ м.куб стоков

Июль

Поступающий ссток

Очищенный сток

Август

Поступающий

сток

Очищенный сток

Сентябрь

Поступающий

сток

Очищенный сток

Октябрь

Поступающий

сток

Очищенный сток

Ноябрь

Поступающий

сток

Очищенный сток

Декабрь

Поступающий

сток

Очищенный сток

Как следует из приведённых в таблице 1 данных (июль – сентябрь) применение технологии UCT (University of Cape Town ) на Сестрорецкой станции позволяет достигать новые нормы ХЕЛКОМ по общему фосфору 0,5 мг/л лишь при применении коагулянта – Ферикс 3 в количестве 30 – 35 мг/л.

Организация зон “дозревания” в начале октября 2010г., т. е. внедрение технологии UCT K (University of Cape Town - Kell ), позволяет после автоселекции биоценоза активного ила, достигать новые нормы ХЕЛКОМ по общему фосфору 0,5 мг/л без применении коагулянта и с достаточно большим запасом.

Определение содержания фосфора фосфатов и ЛЖК в фильтрованных пробах поступающей в аэротенк сточной воды и культуральной жидкости непосредственно в зоне “дозревания” показало, что на входе в аэротенк фосфор фосфатов составлял 1,2 мг/л, в зоне “дозревания” – 155 мг/л; ЛЖК соответственно – 1,6 и 4,6 мг.экв/л (Келль, 2011).

Таким образом, в зоне “дозревания” происходит не только процесс высвобождения фосфора, что указывает на активную жизнедеятельность ФАО, но и процесс ацидофикации, поставляя ЛЖК непосредственно в зону их аккумуляции фосфатаккумулирующими организмами с использованием энергии полифосфатных связей. При этом в отличие от традиционных методов ацидофикации (Козлов и др., 2010г)

С целью более глубокого изучения процесса и его оптимизации продолжены работы по внедрению способа биологической дефосфотации UCT K на Сестрорецкой станции с использованием модульной установки фирмы HACHLanger (см. фото 2).


Фото 2. Установка фирмы HACHLanger .

Данная установка позволяет в режиме реального времени контролировать состав стоков по следующим параметрам: фосфор фосфатов, азот аммонийный, азот нитратов, растворённый кислород, температура, калий, рН, уровень осадка в отстойнике.

В частности на СКС при отработке оптимального режима способа биологической дефосфотации с зонами “дозревания”(UCTK : University of Cape Town – Kell ) - особенно актуальным является круглосуточное определение в очищенной воде, сбрасываемой в водоём,фосфора фосфатов, азота аммонийного каждые 10 минут и азота нитратов каждые 5 минут, производимого установкой фирмы HACHLanger .

За период испытаний (апрель-май 2011г.) установка позволила отработать технологические параметры процесса биологической дефосфотации с зонами “дозревания”(UCTK ) в значительно более короткие сроки и меньшим количеством проведённых лабораторных анализов (см. графики на рис. 1 и 2).


Рисунок 1 .Изменение фосфора фосфатов с 26.04 по 03.05 2011 года (интервал круглосуточного определения 10 минут).


Рисунок 2.Изменение фосфора фосфатов с 09.05 по 16.05 2011 года (интервал круглосуточного определения 10 минут).

Как видно из приведённых на графиках данных, в начальный период испытаний (рис.1) колебания концентраций фосфора фосфатов на выходе с очистных сооружений значительно выше, чем в конечный (рис. 2).

Показатели работы Сестрорецкой станции за май месяц без применения коагулянтов приведены в таблице 2.

Фосфор фосфатов

Фосфор общий

Азот нитратов

Азот аммонийный

Азот общий

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

04.05. 2011г.

Поступающий ссток

Очищенный сток

18. 05. 2011 г.

Поступающий

сток

Очищенный сток

25. 05.

2011 г.

Поступающий

сток

Очищенный сток

Среднее за май

Поступающий

сток

Очищенный сток

В Ы В О Д Ы.

1. Способ UCT K позволяет гарантированно снижать содержание общего фосфора в хозбытовых сточных водах при их биологической очистке до новых норм ХЕЛКОМ без применения коагулянтов.

2. В отличие от традиционных методов ацидофикациине требуется выделение дополнительного оборудования на предварительную ацидофикацию сырого осадка.

3. Способ может быть внедрён на действующих станциях биологической очистки.

4. Использование модульной установки фирмы HACHLanger позволило при внедрении способа биологической дефосфотации с зонами “дозревания”(UCTK ) на Сестрорецкой станции отработать технологические параметры процесса в значительно более короткие сроки и меньшим количеством трудозатрат.

С П И С О КЛ И Т Е Р А Т У РЫ.

1. Баженов В. И., Денисов А. А. Проектирование современных комплексов биологической очистки сточных вод. Экология и промышленность России. 2009, N 2 http://www.pump.ru/information/publications/Articles/EPR%202-2009%20Bazhenov.pdf

2. Беляев А. Н., Васильев Б. В., Маскалёва С. Е., Мишуков Б. Г., Соловьёва В. А. Удаление азота и фосфора на канализационных очистных сооружениях. Водоснабжение и санатарная техника. 2008, N 9, с. 38-43

3. Данилович Д.А., Козлов М.Н., Мойжес О.В., Шотина К.В., Ершов Б.А. Результаты работы крупномасштабных сооружений биологической очистки от соединений азота и фосфора: Сб. статей и публикаций / МГУП Мосводоканал. - М., 2008. - с. 101-119.

4. Degremont . Технический справочник по обработкеводы, Санкт-Петербург, Новый журнал, т.1, 2007 г., с. 427

5. Келль Л. С. Экологические аспекты развития ноосистем в свете парадигмы самоорганизации материи. Санкт-Петербург. Астерион. 2010. 83 с.

6. Келль Л. С. Внедрение технологии биологической дефосфотации UCTK .Экология производства. 2011, N 5, с. 75-77

7. Козлов М. Н., Пахомов А. Н., Стрельцов С. А., Харькина О. В., Хамидов М. Г., Ершов Б. А., Белов Н. А.,Опыт эксплуатации сооружений биологической очистки сточных вод от соединений азота и фосфора; Водоснабжение и санитарная техника N 10, 2010г, с. 35 – 41

8. Одум Ю.Основы экологии.Москва. Мир, 1975. 740 с.http://www.twirpx.com/file/91230/

9. Патент N 2424199, Келль Л. С. Способ биологической очистки сточных вод активным илом. Дата публикации: 20 Июля, 2011г. Бюл. N 20

Суммарное содержание фосфора, присутствующего в воде открытых природных водоемов в виде растворенных минералов, а также в составе органических соединений, называют общим. Первоочередным фактором, определяющим концентрацию данного элемента, подобно азоту, является ионный обмен, происходящий между его минерально-органическими формами и организмами, населяющими конкретный водный объект.

Формы фосфора в природных водах

Таблица 1. Формы фосфорсодержащих соединений в воде

Показатели насыщенности общим растворенным фосфором для незагрязненных природных водоемов ограничиваются пределами 5-200 мкг/дм 3 .

Этот элемент выполняет функцию мощного биогенного агента. В природных водоемах зачастую именно суммарное содержание минерально-органического фосфора становится фактором, сдерживающим дальнейший рост продуктивности. Попадание в естественные источники избыточных объемов фосфорсодержащих соединений запускает механизмы неконтролируемого разрастания растительной биомассы. Малопроточные и непроточные объекты более других подвержены изменениям в трофическом статусе, которые сопровождаются полной перестройкой всей структуры водоема: повышается концентрация бактерий и солей, начинают преобладать гнилостные процессы, вследствие чего вода мутнеет.

Фосфор в водоём поступает из ряда источников, среди которых есть и отходы некоторых производств, но большая часть его соединений попадает в водоемы в результате сельскохозяйственной и бытовой деятельностью человека. Этот элемент применяется в составе минеральных удобрений. Поверхностными стоками с одного орошаемого гектара смывается порядка полкилограмма фосфора. Каждые сутки с ферм проникает в водоемы до 0.01-0.05 кг фосфорсодержащих веществ на одно животное. Не подвергавшиеся очистке и неочищенные бытовые стоки ежедневно несут по 0.003-0.006 кг от каждого жителя.

Одним из процессов, в таких условиях влияющих на эвтрофикацию, является процветание цианобактерий. Многие виды сине-зеленых водорослей токсичны. Они вырабатывают органические вещества, входящие в группу ядов нервнопаралитического действия. Выделения цианобактерий могут вызывать дерматозы и становиться причиной расстройств органов ЖКТ. Попадание внутрь больших масс сине-зеленых водорослей опасно развитием паралича.

На основании нормативов ГСМОС/GEMS - системы глобального мониторинга окружающей среды - уровень фосфора служит важнейшим критерием при определении трофического состояния открытых водоемов естественного происхождения. Определение насыщенности общим фосфором (в расчет принимаются растворенные и взвешенные формы, органика и минеральные соединения) стало обязательным пунктом в программе контроля состава водных объектов.

Фосфор органический

Синтезированные промышленными способами фосфорорганические соединения в данной категории не рассматриваются - сюда относят только вещества, поступающие в результате жизнедеятельности и разложения организмов, населяющих водоем, и вследствие обменных процессов, происходящих с отложениями на его дне. Органические фосфорные соединения присутствуют в естественных открытых водоемах истинно растворённом и коллоидном состояниях, а также во взвесях.

Фосфор минеральный

Минерально-фосфорные конгломерации поступают в водоемы из-за хим. выветривания и растворения ортофосфатсодержащих пород - апатитов и фосфоритов. Образуются они также и в результате разложения останков представителей флоры и фауны. В больших количествах фосфор минерального происхождения заносится со стоками содержащими удобрения, синтетические гигиенические средства, с химическими присадками для котлов, препятствующими образованию накипи.

Разнообразны ионные формы, в которых фосфор проникает с поверхности водосбора. Это и ортофосфат-ионы, и полифосфаты. Немалую часть составляют пирофосфаты и метафосфат-ионы. При pH свыше 6.5 доминирующей неорганической формой (порядка девяноста процентов ионов) является HPO 4 2- . В водоемах с кислой средой основным является соединение H 2 PO 4 - .

Содержание фосфора в открытых природных источниках незначительна. В литре ее величина обычно ограничивается несколькими сотыми миллиграмма, однако загрязненные водные объекты могут показывать содержание в несколько миллиграммов. Для подземных источников характерна концентрация, не превышающая 100 мкг/дм 3 (исключением являются водоемы, расположенные в местах, где залегают преимущественно фосфорсодержащие породы).

Смена сезонов сказывается на уровне фосфорсодержащих соединений. Причем колебания бывают довольно значительными. На скачки насыщенности влияют естественные изменения в интенсивности биохимического окисления и фотосинтеза. Весенне-летний период характеризуется минимальными показателями содержания, зато в осенне-зимние месяцы наблюдается предельное содержание фосфора. В морях отмечается весеннее и осеннее понижение уровня фосфора, а зимой и летом фиксируются наивысшие показатели.

Соли фосфорной кислоты проявляют свою токсичность только при высоких концентрациях. Зачастую химическая активность фосфатов обусловлена присутствием в водоеме примесей фтора.

Госкомэкология РФ, при составлении методики оценивания экологической ситуации, в качестве норматива рекомендовала показатель в 50 мкг/дм 3 - именно такое содержание фосфатов считается приемлемым.

Взвеси и растворы неорганических фосфатов определяются без предварительных манипуляций - колориметрических проб.

Полифосфаты

Токсичность этих фосфорных производных незначительна. Полифосфаты являются продуктом образования соединений между полифосфатами и кальцием, а также иными ионами, играющими биологически важную роль.

Me n (PO 3) n , Me n+2 PnO 3n+1 , Me n H 2 PnO 3n+1

Эти вещества применяются в пищевом производстве, как катализаторы, и при котловой обработке воды, как ингибитор коррозии. С их помощью обезжириваются волокна и смягчается вода. Полифосфаты - это неотъемлемые компоненты мыла и составов для стирки.

Остаточный объем полифосфатов, допустимый в отношении хозяйственно-питьевых водных объектов - 3.5 мг/дм 3 (органолептический показатель лимита вредности).

Уважаемые господа, если у Вас имеется потребность коррекции концентраций фосфоросодержащих соединений для доведения качества воды до определённых нормативов, сделайте запрос специалистам компании Waterman . Мы разработаем для Вас оптимальную технологическую схему очистки воды.

Сточные воды являются сложной неоднородной системой, содержащей загрязнения различного характера. Вещества представлены в растворимом и нерастворимом, органическом и неорганическом виде. Концентрация соединений бывает различной, в частности, органические загрязнения в бытовых стоках представлены в виде белков, углеводов, жиров и продуктов биологической переработки. Кроме того стоки содержат довольно крупные примеси – отходы растительного происхождения, такие как бумага, тряпки, волосы и синтетические вещества. Неорганические соединения представлены ионами фосфатов, в состав может входить азот, кальций, магний, калий, сера и другие соединения.

В состав бытовых стоков всегда входят биологические вещества в виде плесневых грибков, яйца глист, бактерий, вирусов. Именно из-за присутствия загрязняющих веществ, сточные воды считаются опасными для человека, растений и животных в эпидемиологическом плане.

Для определения состава и количества взвешенных частиц в водах слива, необходимо провести множество анализов химического и санитарно-бактериологического типа. Результаты покажут уровень концентрации загрязняющих элементов в воде, а значит, самый оптимальный вариант очистки. Но проведение полного анализа не всегда возможно, поэтому проще воспользоваться упрощенным вариантом, дающим неполную характеристику воды, однако предоставляющим сведения о прозрачности, наличии взвешенных частиц, концентрации растворенного кислорода и потребности в нем.

Анализ проводится по следующим показателям:

  1. Температура . Показатель указывает на скорость образования осадка из взвесей и интенсивность процессов биологического вида, влияющих на оперативность и качество очистки.
  2. Цветность, окраска . Бытовые сточные воды нечасто имеют выраженный окрас, но если есть подобный фактор, качество стоков весьма плохое и требует усиления работы очистных сооружений или полной замены способа очистки.
  3. Запахи . Как правило, высокая концентрация продуктов распада органики, наличие в стоках фосфатов и входящий в состав азот, калий, сера, придают потокам резкий неприятный запах.
  4. Прозрачность . Это показатель уровня содержащихся загрязнений, определяющийся методом шрифта. Для бытовых вод стандарт составляет 1-5 см, для потоков, прошедших методы очистки биологическими соединениями – от 15 см.
  5. Уровень pH используется для измерения реакции среды. Допустимые показатели 6,5 – 8,5.
  6. Осадок . Измеряется именно плотный осадок, определяемый по фильтрату пробы. По стандартам СНиП допускается не более 10г/л.
  7. Взвешенные вещества составляют в городских водах не более 100-500 сг/л с зольностью до 35%.

Отдельно исследуется фосфор и азот, а также все их формы. Берется 4 формы азота: общий, аммонийный, нитритный и нитратный. В сточных водах чаще встречается общий и аммонийный тип, нитритный и нитратный лишь, если применялись методы очистки посредством аэротенков и биофильтратов. Установление концентрации азота и его форм – важная составляющая анализа, так как азот необходим для питания бактерий как и фосфор.


Как правило, азот в бытовых сточных водах содержится в полном объеме, а вот фосфатов маловато, поэтому зачастую при недостатке фосфаты заменяются известью (хлористым аммонием).

  • Сульфаты и хлориды не подвержены изменениям при очистке, удаление взвешенных веществ возможно только при полной переработке стоков, однако содержание веществ в малой концентрации не влияет на биохимические процессы, поэтому допустимые параметры остаются в пределах 100 мг/л.
  • Токсичные элементы – это тоже взвешенные вещества, однако даже малая концентрация соединений оказывает отрицательное влияние на жизнь и деятельность организмов. Именно поэтому взвешенные вещества токсичного типа относятся к виду особо загрязняющих и выделены в отдельную группу. Сюда относятся: сульфиды, ртуть, кадмий, свинец и многие другие соединения.
  • Синтетические поверхностно-активные взвешенные вещества – одна из самых серьезных угроз. Содержание элементов в сточных водах негативно отражается на состоянии водоемов, а также снижает функциональность очистных сооружений.

Различается всего 4 группы СПАВ:

  1. Анионоактивные – на долю соединений приходится ¾ мирового производства СПАВ;
  2. Неоногенные – занимают второе место по концентрации в городских сточных водах;
  3. Катионоактивные – замедляют процессы очистки, происходящие в отстойниках;
  4. Амфотерные – встречаются редко, но значительно снижают эффективность удаления отходов из воды.

Растворенный кислород содержится в сливных водах не более 1 мг/л, что предельно мало для нормальной работы микроорганизмов, которые отвечают за удаление взвешенных частиц из стоков. Поддержание жизнедеятельности бактерий требует от 2 мг/л, поэтому важен контроль за содержанием растворенного кислорода в бытовых сливных водах, особенно за теми, что сбрасываются в искусственные или естественные водоемы – несоблюдение допустимых стандартов содержания растворенного кислорода приведет к появлению загрязняющих частиц в озерах и нарушению естественного природного баланса. А это уже означает вымирание природных ресурсов.

Что касается биологических соединений, входящих в состав вод слива, то процесс очистки справляется с ними на 90% и выше. Особенно это касается яиц гельминтов, встречающихся в потоках в большом разнообразии. Концентрация яиц достигает до 92% от общего состава загрязняющих веществ, поэтому именно удаление элементов является одной из наиболее важных задач.

Варианты очистки сточных бытовых и промышленных вод


Самым практичным и популярным считается способ, при котором удаление производится биологическим путем. Функционально процесс представляет собой переработку активными биологическими компонентами загрязняющих частиц, попавших в сточные бытовые воды. Различается удаление двумя вариантами:

  1. Анаэробный – процесс разрушения веществ без доступа воздуха/кислорода;
  2. Аэробный – разрушение и удаление взвешенных частиц полезными микроорганизмами с поступлением кислорода.

Кроме того, создаются искусственно условия для лучшей переработки органики, но иногда колоний бактерий достаточно, чтобы очистка бытовых сточных потоков проходила в естественных условиях и важно лишь следить за поступлением достаточного количества органики.

Искусственно создаваемые условия называются полями фильтрации. Это специальные участки с песчаной или суглинистой почвой, подготовленные для протекания естественной биологической очистки загрязнений в сливных водах посредством фильтрации через почвенные слои. Таким образом достигаются допустимые нормы содержания веществ. Процесс протекает с помощью аэробных и анаэробных бактерий, содержащихся в грунте, поэтому удаление загрязняющих частиц считается более полным. Однако метод не всегда может устранить фосфаты и азот в очищаемых водах, к тому же считается неудобным из-за больших площадей, сезонного использования и неприятного запаха.


Применение септиков и аэрационных биологических очистных сооружений также способно справиться с очисткой стоков. Преимущества искусственных очистных в возможности интенсификации процессов очистки, дооснащение оборудованием типа биофильтров, а также способностью использовать конструкции в течение всего года. Огромное значение имеет возможность очистки без неприятного запаха. При поддержании благоприятного климата и поступлении достаточного количества органики, процесс очистки происходит беспрерывно, причем производится удаление самых серьезных загрязняющих соединений, концентрация которых превышена. Но важно помнить, что общий состав поступающих стоков не должен содержать множество элементов, таких как:

  • Химические кислоты;
  • Бензины и растворители;
  • Биологически активные вещества;
  • Антибиотики;
  • Соединения порошков стиральных, моющих;
  • Абразивы.

При всех возможностях удаления, очистка в септиках бытового назначения не справляется с соединениями фосфатов, нитратов и азот тоже не нейтрализует, однако значительно сниженная концентрация позволяет накапливать очищенные потоки в резервуарах, откуда брать воду для полива или технических нужд.

Взвешенные вещества, входящие в состав сливных потоков, удаляются посредством биологического способа очистки, то есть посредством культивирования в водах микроорганизмов, разрушающих соединения загрязняющих частиц. Органика бывает как растительного, так и животного происхождения, причем основным компонентом растительного мусора является углерод, а животного – азот. Именно поэтому общий состав полезных бактерий для очистки сточных потоков должен содержать все виды микроорганизмов для того, чтобы успешно справляться с удалением загрязнений.

Для того чтобы удалить в сточных водах агрессивные химические соединения, фосфаты, токсические вещества, входящие в состав промышленных стоков, применяются централизованные системы очистки, где показано использование сильных реактивов и химикатов. А для того, чтобы справиться с загрязнениями в бытовых водах, откуда берется вода для полива, мытья машины и прочих хозяйственных нужд, достаточно качественных септиков.

Загрузка...
Top