Почему необходимо обеспечить плавный пуск скважинного насоса. Зачем нужен плавный пуск насоса? Плавный пуск скважинного насоса своими руками

Устройство плавного пуска - электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска


При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Мощность

Главным параметром УПП является величина I ном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил... Тогда I ном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

    некоторая электротехника может самопроизвольно отключаться;

    возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Преимущества регистрации

Вы сможете:

  • Приобретать оборудование со скидкой сразу после регистрации
  • Совершать покупки намного быстрее и удобнее
  • Следить за выполнением заказов
  • Смотреть историю своих заказов, получать рекомендации
  • Получить накопительную систему скидок на все оборудование
  • Участвовать в акциях
  • Получать первыми информацию о новых товарах и услугах
  • Видеть документы по отгрузкам
  • Получать консультации у специалиста, прикрепленного к вашей компании

Получите доступ ко всем предложениям

Войдите под своим логином или пройдите легкую процедуру регистрации и получите доступ ко всем горячим предложениям

Зарегистрироваться

Похожие видеообзоры

Опубликовано автором - - Ноябрь 8, 2013

Высокий пусковой ток – проблема для систем с ограничением по максимальной мощности. Автомат может выбивать, система бесперебойного питания уйти в режим перегрузки. Как быть?

Удачным решением станет использование устройства плавного пуска (УПП). Например, мы имеем однофазный погружной насос мощностью 1кВт, расположенный в скважине на глубине 50 метров. Для старта его двигателя потребуется 4-6-ти кратный пусковой ток, т.е. система должна выдержать кратковременную мощность около 5кВт. Скажем, инвертор, расчитанный на 3кВт просто не сможет осуществить запуск. Момент старта также будет сопровождаться резким повышением давления, который фактически означает гидроудар по системе водопровода.

В линию, питающую насос вставим УПП. Устройство в течение заданного времени (обычно до 20сек.) плавно поднимет напряжение, что позволит насосу с ускорением раскрутить крыльчатку, без рывка. В итоге мы приравняли пусковой ток к номиналу,т.е. он составил величину 1кВт и существенно продлили жизнь погружному насосу (срок службы увеличивается где-то в 2 раза, учитывая стоимость насоса, решение о применении УПП, даже в отсутствии системы резервирования энергии становится очевидным):

Представим схему подключения , которое может использоваться как с однофазным, так и с трехфазным оборудованием:


Существую ли ограничения для использования устройства плавного пуска? Да, таковые есть и о них следует знать:
1) УПП нельзя использовать с холодильниками. Высокий пусковой ток необходим для срыва в движение клапанов компрессора
2) Аналогично для кондиционеров и прочего оборудования

Если у вас остались вопросы – рад буду ответить в комментариях!

Читайте также:

  • Можно ли экономить на электричестве при помощи…

Скважинный насос, вследствие необходимости обеспечить высокую производительность при довольно небольших поперечных габаритах, представляет собой сложное устройство, работающее в довольно жестких условиях. А если учесть, что монтаж его (а также демонтаж) представляет собой довольно трудоемкую работу, то надежность скважинного насоса приобретает первостепенное значение. Одним из факторов, оказывающих решающее влияние на продолжительность работы этого агрегата, являются пусковые токи. Вследствие того, что вращающиеся части электродвигателя и самого насоса имеют определенную инерцию, в отличие от тока (то есть величина тока может практически мгновенно достигать очень высоких значений), то при включении возникают пусковые токи, которые в 4-10 раз превышают номинальные! А если еще скважинный насос включается часто? Например, из-за небольшого объема мембранного гидроаккумулятора или неправильной настройки реле давления? Понятно, что, в конце концов, изоляция обмотки электродвигателя не выдержит таких высоких тепловых нагрузок и произойдет короткое замыкание, следствием которого явится выход насоса из строя. Чтобы уменьшить пусковые токи, используются различные системы плавного пуска.

Виды плавного пуска

В настоящее время для скважинных насосов в основном используются две системы плавного пуска:

  1. 1.Плавный пуск SS . При этом способе при помощи электроники на электродвигатель подается плавно повышающееся напряжение (а значит и плавно повышающийся ток). Регулировка напряжения производится путем фазового управления. По такому принципу работают многие станции (пульты) управления скважинными насосами, как отечественных, так и зарубежных торговых марок: Каскад, Высота, Grundfos, Pedrollo и др.
  2. 2. Плавный пуск с помощью преобразования частоты. Этот способ является наиболее совершенным с точки зрения снижения пусковых токов. Преобразование частоты позволяет удерживать пусковой ток на уровне номинального. Основной недостаток станций (пультов) управления с частотно-регулируемым приводом – это их высокая стоимость, сравнимая со стоимостью самого насоса. Среди отечественных моделей стоит выделить СТЭП, СУ-ЧЭ, СУН. АСУН. Наиболее популярными зарубежными моделями являются SIRIO и SIRIO-ENTRY 230 итальянской торговой марки ITALTECNICA. Следует сказать, что в скважинных насосахсерии SQ/SQE встроена система плавного пуска на основе преобразования частоты.

Преимущества плавного пуска

  1. Снижение пусковых токов (в случае с частотно-регулируемым приводом пусковые токи уменьшаются до номинальных).
  2. Снижение механических нагрузок на рабочее колесо и подшипники скважинного насоса.
  3. Уменьшение или вовсе предотвращения гидроудара, возникающего в момент включения насоса. Гидроудар отрицательно воздействует не только на сам насос, но и на скважину, вызывая дополнительные нагрузки на стыки обсадных труб и вызывая быстрый износ фильтров. Как следствие, скважина начинает песковать.

На основе частотно-регулируемой системы плавного пуска можно реализовать управление мощностью насосы путем изменения частоты вращения его двигателя. То есть система управления точно подбирает частоту вращения электродвигателя, а значит и его мощность в соответствии с требуемой в данный момент производительностью, поддерживая постоянное давление в сети. Другими словами, на работу электродвигателя расходуется ровно столько электроэнергии, сколько нужно для обеспечения требуемой производительности и ни джоулем больше. Такая система реализована в скважинных насосах Grundfos серии SQE.

О том, как классно иметь дома скважину знают все. Это удобно и эффективно, пока ничего не сломается. А проблемы рано или поздно дадут о себе знать, и по закону подлости, в самый неподходящий момент. Отказываться от скважины и копать колодец — не вариант. Лучше предотвратить возможные аварии и защититься от них заранее.

Какой вариант водоснабжения лучше для частного дома

Вода со скважины поднимается специальным глубинным насосом. В зависимости от конструкции водоснабжения, она закачивается в специальный резервуар — гидроаккумулятор или подается прямо в водопровод.

Система с резервуаром больше подходит для частного дома. Например, для семьи из 3-4 человек в среднем хватает 70 л на день. Для такого водоснабжения понадобится: 50-литровый гидроаккумулятор на соответствующий объем, реле давления и насос со скоростью перекачивания 1 м3/ч. Все вместе будет стоить 100$.

Но, для отеля на 12 номеров такой вариант — нерентабельный, потому что понадобится резервуар размером как целый номер. 500-литровый гидроаккумулятор обойдется в 400$ и будет занимать много полезного пространства. Дешевле и эффективнее купить частотный преобразователь за 150-200$.

Водоснабжение с частотным преобразователем

Частотник регулирует обороты электромотора в зависимости от давления в водопроводе. Это работает по такому принципу :

  1. На водопроводную трубу ставится реле давления, подключенное к частотному преобразователю;
  2. Система включается в сеть и частотник плавно меняет характеристики тока насоса;
  3. За счет этого он постепенно выходит на номинальные обороты;
  4. При заполнении в трубах растет давление, и реле подает сигнал на частотник, уменьшающий скорость подкачки.

Какие преимущества такой системы?

Удобство для пользователя

Например, когда посетитель в отельном номере принимает душ, давление в водопроводе падает, и насос работает быстрее. Когда кран закручен, электромотор работает на малых оборотах, чтобы вода не стекала с труб. Так, если Вы открутите кран, она мгновенно начнет течь под нужным напором.

Безопасность электросети

При включении каждый электродвигатель потребляет в 3-4 раза больше электричества — возникает пусковой ток. В этот момент сетевая нагрузка составляет соответственно 300-400% от номинальной. Пик держится доли секунды, пока электромотор не выйдет на нормальные обороты. Чем это опасно?

Вернемся к нашему отелю. Чтобы перебои с электроэнергией не оставили посетителей без благ цивилизации, любой ответственный хозяин установит генератор. Предположим, что мощность резервного источника будет 20 кВт, из которых 10 кВт сразу уйдет на освещение, кондиционеры, розетки с ноутбуками и т.д.

Мощность насоса — 5 кВт, но так как его пусковой ток равен 3 номинальным, на старте он возьмет все 15 кВт. Генератор может предоставить только 10 кВт, но электродвигателю этого будет мало. Такая нагрузка выведет генератор из строя, и в результате отель останется без света и воды .

Частотный преобразователь снимает пусковой ток . Если бы в предыдущем примере был частотник, нагрузка на генератор не превысила бы 15 кВт и он бы работал в безопасном режиме.

Длительный срок службы насоса

Пусковой ток вредит не только сети, но и электромотору. Каждый раз при включении он работает в нештатном режиме и кратковременно выдерживает нагрузку, на которую не рассчитан. Резкие пуски и остановки увеличивают износ электромотора. Частотный преобразователь делает плавную остановку, чем увеличивает срок эксплуатации в два раза .

Что будет, если не защитить систему подачи воды?

Чтобы водоснабжение дома было бесперебойным и эффективным, ему все же нужна защита. Бесспорно, насос — главный элемент в системе, но каким бы дорогим и качественным он не был, его ничего не спасет от короткого замыкания.

Аварии случаются не только под водой, но и в погружном кабеле и даже сети дома. Сложно предугадать, что сломается первым. Чтобы не играть в лотерею, лучше защититесь от всего и сразу.

2007-08-28

Рост как жилищного, так и промышленного строительства в последнее время сделал стабильное и качественное водоснабжение одной из первоочередных задач. Одним из наиболее перспективных его способов является использование подземных источников посредством скважин различной глубины. Они позволяют владельцам получать значительное количество воды хорошего качества, причем сроки активной эксплуатации велики и могут составлять десятки лет. При этом скважина - сложное гидротехническое сооружение, требующее квалифицированного подхода к обустройству и надежного оборудования - скважинных насосов.

Рис. 2. Пуск электродвигателя по методу «звезда-треугольник»



Эти агрегаты специально разработаны для работы в достаточно сложных условиях (узкое пространство скважины, повышенная тепловая нагрузка на двигатель и т.д.). Они достаточно дороги и, в силу специфики монтажа, их ремонт сопряжен со значительными трудностями и расходами. Поэтому при подборе такого оборудования следует обращать внимание на ряд деталей и практических моментов, которые помогут увеличить срок бесперебойной работы оборудования и максимально снизить эксплуатационные затраты.

Один из таких ключевых параметров — это способ пуска. Как известно, пусковой ток электродвигателя насоса нередко в 4-7 раз превышает ток номинальной нагрузки. Это ведет к повышенному электротепловому износу изоляции обмоток статора, от которой существенно зависит надежность и долговечность электродвигателя. Кроме того, при недостаточной мощности распределительной электросети возможна кратковременная просадка напряжения, что неблагоприятно сказывается на работе другого электрооборудования, присоединенного к этой же сети.

Вреден такой запуск и для агрегата и скважины в целом, поскольку часто сопровождается гидроударом, разрушающим трубопроводы, арматуру и сам насос. Также при подобном старте наблюдается высокий приток воды в скважину из водоносного пласта, за счет чего происходит разрушение фильтровальной зоны и попадание песка в скважину. Наиболее эффективным решением всех этих проблем является обеспечение плавного пуска насоса, для чего разработан целый ряд различных методов. Все они имеют как достоинства, так и недостатки. В этом материале мы сделали попытку сравнения их эффективности и стоимости.

Негативные факторы, возникающие при эксплуатации электродвигателей скважинных насосов

При организации водоснабжения на базе использования подземных вод технологические режимы эксплуатации водозаборных скважин включают в себя пусковые режимы погружных насосов, количество которых может достигать 30 пусковостановок в час (см. табл. 1). Пуск погружных насосов является одним из наиболее неблагоприятных режимов для их электродвигателей, водоподъемных труб и водозахватной части скважины.

Электродвигатель погружного насоса в этот период на короткое время подвергается пиковой нагрузке, т.к. его пусковой ток, повторимся, в 4- 7 раз превышает значение номинального при относительно невысоком пусковом моменте. Кроме того, скачок пускового тока создает ударный электромагнитный момент, передающийся через вал двигателя на рабочее колесо насоса.

При таких условиях в водоподъемной колонне труб возможны максимальные колебания давления при гидравлическом ударе, а в водозахватной части — высокие значения притока воды в скважину со стороны водоносного пласта. При этом для режима пуска характерны два периода:

  • первый (t 1 = 0,9-0,5 с), в течение которого возникают высокие значения скоростей притока воды в скважину со стороны водоносного пласта в верхней части фильтра. Также происходит резкое изменение давления, нарушающее устойчивость прифильтровой зоны (происходит вынос песка);
  • второй (t 2 = 1-5 с) при определенных условиях сопровождается гидравлическим ударом в напорном трубопроводе.

Для исключения негативных явлений переходных процессов, возникающих при пуске погружных насосов, разработаны технологические схемы оборудования скважин. Они базируются на электрическом (с помощью устройств, изменяющих число оборотов электродвигателя) регулировании подачи воды погружными насосами и гидравлическом (с помощью запорно-регулирующей арматуры) принципах. В данной статье рассматривается электрическая составляющая решения проблемы, а также ее влияние на энергоэффективность используемого насосного оборудования.

Существующие способы снижения пусковых токов электродвигателей. Их реализация на примере скважинных насосов Grundfos

Как правило, в скважинных насосах используются следующие способы снижения пусковых токов их электродвигателей: DОL — прямое включение; SD — включение методом «звезда-треугольник»; метод включения электродвигателя посредством пускового трансформатора — AF; SS — плавный пуск и FC — преобразователь частоты (см. табл. 2). При выборе способа снижения пусковых токов следует учитывать область применения насосного оборудования, технические требования, а также действующие нормы и правила эксплуатации электросетей.

Метод прямого включения (DОL)

При пуске методом DОL, как показано на рис. 1, контактор или аналогичные устройства подключаются к сети напрямую. При прочих постоянных параметрах DОL является тем способом пуска, при котором в электродвигателе возникает минимальное количество тепла и тем самым у электродвигателей мощностью до 45 кВт обеспечивается максимальный срок службы. Однако у электродвигателей большей мощности механическая нагрузка настолько велика, что рекомендуется снижать токи.

Метод включения «звезда-треугольник» (SD)

Это наиболее часто применяемый способ снижения пусковых токов. Во время пуска электродвигатель включен на «звезду», а после окончания пуска переключается на «треугольник». Такое переключение производится автоматически через заданный временной интервал. При пуске в положении «звезда» ток на треть ниже, чем при пуске путем прямого включения и лежит в пределах 1,8-2,5 от номинального.

Метод относительно дешев, прост и надежен. Для насосов с небольшим моментом инерции, например, погружных, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до 2900 мин -1 требуется всего 0,1 с.

Это означает также, что насос при переключении тока сразу же останавливается. Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока. При переключении со «звезды» на «треугольник» насос быстро останавливается и во второй раз должен запускаться напрямую.

Из диаграммы (рис. 2) видно, что на втором этапе значительного сокращения пускового тока не происходит. Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих более продолжительным моментом инерции. У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока.

Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме «звезда» приводит к его перегреву и, следовательно, сокращает срок службы. Установки, содержащие погружные насосы с электродвигателями, включенными по этому методу, часто бывают дороже, чем аналоги, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).

Метод включения электродвигателя посредством пускового трансформатора (AF)

При этом методе пуска (его также называют методом Корндорфа) напряжение снижается посредством трансформаторов (обычно двух), по одному на каждую фазу. Трансформаторы часто имеют два сетевы выхода: один на 75 % и другой на 60 %. При использовании 60 %-го выхода происходит снижение пускового тока, аналогично пуску по методу «звезда-треугольник». При пуске электродвигатель получает сначала пониженное напряжение, а затем полное.

При переключении обмотки трансформатора подключены как дроссельные катушки. Это означает, что электродвигатель все время остается связанным с сетью и частота его вращения не снижается. Потребление электроэнергии при пуске показано на схеме (рис. 3). Пусковые трансформаторы относительно дороги, но очень надежны. Естественно, пусковой ток определяется характеристиками электродвигателя и насоса и в зависимости от их типоразмеров может значительно колебаться.

Плавный пуск электродвигателя (SS)

Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления. Электронный прибор содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры и силовой блок с симметричным триодным тиристором. Пусковой ток ограничен, как правило, величиной, в дватри раза превышающей рабочий ток.

При сохранении прочих параметров выключение электродвигателя по этому методу также обеспечивает уменьшение начального пускового момента. Наличие инерции в процессе пуска может привести к значительному теплообразованию в электродвигателе и тем самым к снижению его срока службы. Однако эта проблема при коротком времени ускорения/замедления, например, в течение 3 с, не имеет практического значения.

Это утверждение относится также к пуску электродвигателей по методам SD (включение через «звезду-треугольник») и AF (включение через пусковой трансформатор). Таким образом, при эксплуатации скважинных насосов Grundfos рекомендуется соблюдать для плавного пуска приведенное на графике (рис. 4) время ускорения/замедления. В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 55 %.

Однако при нормальных условиях эксплуатации этого не требуется. При плавном пуске электродвигателя его выключатель обеспечивает подачу тока несинусоидальной формы и в определенной мере создает высшие гармоники. В связи с очень коротким временем ускорения/замедления с практической точки зрения (и в нормах, касающихся высших гармоник) это не находит большого применения.

В целом, выключатель плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме DОL. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска. В том случае, если плавный пуск электродвигателей производится через обходной контактор, они могут работать с системой тепловой защиты (Теmрсоn).

Пуск посредством преобразователя частоты (FC)

Пуск электродвигателя посредством преобразователя частоты представляет собой идеальный вариант с точки зрения уменьшения пускового тока, а также импульса давления. Схема такого пуска показана на рис. 5. Преимущество этого метода в том, что пусковой ток все время удерживают на уровне номинального тока электродвигателя. Это означает, что число требуемых в течение часа включений и отключений может быть установлено любым.

В ряде моделей, например, в насосах SQ и SQE функция плавного пуска и останова за счет частотных преобразователей является встроенной, что облегчает монтаж и эксплуатацию.

Некоторые особенности применения устройств плавного пуска и защиты для скважинных насосов

Из всех описанных способов пуск электродвигателя посредством преобразователя частоты является наиболее дорогим. Поэтому его используют лишь в том случае, если в течение какого-либо интервала времени необходимо бесступенчатое регулирование мощности электродвигателя. Например, при переменном водопотреблении, когда изменением частоты можно добиться поддержания постоянного давления на выходе из насоса и экономии электроэнергии.

Кроме того, в ряде случаев существуют определенные ограничения на применение преобразователей частоты. Так, исполнение всех скважинных насосов Grundfos серии SP-A и SP допускает их эксплуатацию с преобразователем частоты при условии соблюдения следующих параметров: минимальная частота должна составлять 30 Гц, максимальная — 60 Гц (в зависимости от мощности электродвигателя).

При этом электродвигатель нужно выбирать по возможности на один типоразмер больше или предусмотреть использование электродвигателя общепромышленного назначения с меньшей тепловой нагрузкой. Кроме того, требуется обеспечить достаточное охлаждение насоса (за счет специального кожуха). Следует обеспечить пропорциональное изменение напряжения и частоты (U/f = const) и отрегулировать частотный преобразователь по номинальному току выбранного погружного электродвигателя.

Необходимо также иметь в виду, что термореле Tempcon, установленное в обмотках двигателей MS4000 и MS6000 насосов SP, не будет работать корректно при использовании частотного преобразователя. Чтобы контролировать температуру двигателя, рекомендуется дополнительно устанавливать термодатчики Pt100. В качестве устройства защиты электродвигателей насосов SP желательно применять модуль MP 204, который может использоваться как отдельно, так и в составе шкафа управления Control MP 204.

Это устройство позволяет осуществлять защиту и контроль электродвигателя по таким важным параметрам, как повышенное и пониженное напряжение, перегрузка и недогрузка по току, сопротивление изоляции, температура двигателя, чередование фаз, пропадание фазы, cos(f), энергопотребление, гармонические искажения, число пусков и наработка моточасов. Но необходимо учесть, что MP 204 не может применяться вместе с частотным преобразователем.

Исходя из приведенных данных, очевидно, что выбор системы пуска, в конечном итоге, обусловлен конкретными условиями, такими как мощность насоса, необходимость регулировать производительность насоса в течение его работы. При этом, в общем случае, для достаточно мощных устройств (более 45 кВт) оптимальным способом по затратам и результативности является плавный пуск.

Использование же таких систем позволяет свести к минимуму возможность повреждения трубопроводов и оборудования гидроударом, защищает электрическую сеть от пиковых нагрузок и дает возможность оптимизировать эксплуатационные затраты.

Загрузка...
Top