Технология ультразвукового контроля сварных швов цистерн. Ультразвуковой контроль сварных соединений

Из большого многообразия методов акустического контроля (ГОСТ 23829-85) для дефектоскопирования наибольшее распространение получили (Рис 2.7.):

    Эхо-метод;

    Зеркальный;

  • Зеркально-теневой;

    Дельта-метод.

Рис 2.7. Методы ультразвуковой дефектоскопии

Эхо-метод ультразвукового контроля

Эхо-метод ультразвуковой дефектоскопии основан на излучении в контролируемое изделие коротких зондирующих импульсов и регистрации эхо-сигнала, отраженного от дефекта. Временной интервал между зондирующим и эхо-импульсами пропорционален глубине залегания дефекта, а амплитуда, в определенных пределах, отражающей способности (размеру) дефекта.

К преимуществам эхо-метода относятся :

    односторонний доступ к изделию;

    относительно большая чувствительность к внутренним дефектам;

    высокая точность определения координат дефектов.

К недостаткам эхо-метода можно отнести :

    низкую помехоустойчивость к поверхностным отражателям;

    резкую зависимость амплитуды эхо-сигнала от ориентации дефекта;

    невозможность контроля качества акустическог контакта в процессе перемещения ПЭП, так как при о сутствии дефектов на выходе отсутствуют какие-либо сигналы.

Несмотря на указанные недостатки, эхо-метод является наиболее распространенным методом ультразвуковой дефектоскопии деталей подвижного состава. С помощью этого метода обнаруживают более 90% дефектов.

Отличительной особенностью метода является то, что при контроле изделий регистрируются и анализируются практически все сигналы, приходящие из изделия после излучения зондирующих колебаний.

Поэтому при контроле изделий с плоскопараллельными поверхностями возможен одновременный прием эхо-сигналов как от дефекта, так и от противоположной поверхности (рис. 2.8.). Причем временное положение эхо-сигнала от дефекта относительно зондирующего импульса пропорционально глубине h его залегания

где с – скорость распространения ультразвуковых колебаний в изделии


Рис. 2.8. Формирование эхо- и донного сигналов

Амплитуда эхо-импульса сложным образом зависит от величины дефекта, свойств его поверхности и его ориентации, а также затухания ультразвуковой волны в изделии и расстояния до дефекта

Естественно, интервал времени между зондирующим импульсом и эхо-сигналом от противоположной (донной) поверхности пропорционален высоте Н изделия.

Сигнал от противоположной поверхности может отсутствовать при следующих ситуациях:

    донная поверхность не параллельна поверхность ввода ультразвуковых колебаний;

    дефект имеет значительный размер, полностью перекрывающий звуковой пучок

    высота (толщина) изделия настолько велика, что вследствие затухания ультразвуковых колебаний амплтуда эхо-сигнала от противоположной поверхности имеет очень малую величину.

Если дефект имеет протяженность, то его границы, определенные эхо-импульсным методом, также могут отличаться от истинных. В связи с этим в ультразвуковой дефектоскопии используют понятие условный размер дефекта.

Для обнаруженного эхо-импульсным методом дефекта можно измерить три условных размера:

    условную ширину ΔХ ;

    условную высоту ΔН ;

    условный размер по длине изделия Δ L .

Сварные соединения и швы требуют постоянного контроля качества, вне зависимости от давности установки. Проверка производится с помощью различных методов, наиболее точным является ультразвуковой контроль. Методика проверки сварных швов используется с начала прошлого столетия, пользуется популярностью ввиду точных показателей, выявления малейших недочетов. Как показывает практика, внутри сварочного шва могут быть скрытые дефекты, которые напрямую влияют на качество соединения, ультразвуковая дефектоскопия помогает выявить мельчайшие детали, недостатки.

Ультразвуковой метод и его технология

Технология ультразвукового контроля используется производством, промышленностью с момента развития радиотехнического процесса. Эффект и устройство технологии в том, что ультразвуковые волны акустического типа не меняют прямолинейную траекторию движения при прохождении однородной среды. Ультразвуковой метод используется также при проверке металлов и соединений, имеющих различную структуру. Такие случаи подразумевают, что происходит частичный процесс отражения волн, зависит от химических свойств металлов, чем больше сопротивление звуковых волн, тем сильнее воздействует эффект отражения.

Дефектоскопия или ультразвуковой контроль не разрушают соединения по структуре. Технология проведения ультразвуковой диагностики включает поиск структур, не отвечающих по химическим или физическим свойствам показателям, любые отклонения считаются дефектом. Показания колебаний рассчитываются по формуле L=c/f, где L описывает длину волны, Скорость перемещения ультразвуковых колебаний, f частоту колебаний. Определение дефекта происходит по амплитуде отраженной волны, тем самым возможно вычислить размер недочета.

Сварные соединения подразумевают работу с наличием газовых ванн, испарения которых не всегда успевают удалиться в окружающую среду. Ультразвуковой метод контроля позволяет выявить газообразные вещества в сварных соединениях, за счет сопротивления волн. Газообразная среда веществ обладает сопротивлением в пять раз меньшим по отношению к кристаллической решетке металлических материалов. Ультразвуковой контроль металла позволяет вывить среды за счет отражения колебаний.

Получение и свойства ультразвуковых колебаний

Акустические волны или ультразвуковые колебания выдаются при частоте, превышающей параметр 20 кГц. Механические колебания, способные рассеиваться при упругих, твердых средах, диапазон, как правило, составляет 0,5 – 10 МГц. Распространение волн структурой металла происходит акустическими ультразвуковыми волнами, воздействующими на равновесие центральной точки.

Существуют несколько способов ультразвукового неразрушающего контроля, наиболее распространенный из них пьезоэлектрический. Заряженная электричеством с определенной частотой пластинка вибрирует, механические колебания передаются в окружающую среду при состоянии волны. Генераторы электро волны используется вне зависимости от предназначения, размеров оборудования, могут выдавать различные параметры.

Скорость обращения ультразвукового контроля напрямую зависит от свойств, типа физической среды. Скорость распространения продольной волны вдвое выше, чем поперечной. Прием информации происходит пластиной из пьезоэлектрического элемента, работающей на преобразование энергии в импульсную энергию. Процессом применяются короткие переменные импульсы различного типа колебаний, что позволяет определить глубину, свойства дефекта.

На границе разделения двух сред, результатом падения продольной акустической волны при наклонном типе является появление отражения и трансформации ультразвуковых волн. Существуют основные типы контроля:

  • отраженные;
  • преломлённые;
  • сдвиговые поперечные;
  • продольные волны.

Процесс происходит путем разделения падающей под углом волны на поперечную и продольную, распространение которых производится непосредственно материалом.

Существует определенное значение угла подачи, направления ультразвуковых колебаний, при нарушении которого, ультразвуковой контроль не будет распространяться вглубь металла, а останется на его поверхности. Данный метод используется при определенных параметрах и задачах, волна двигается только по поверхности материала, что позволяет контролировать качество сварного шва.

Виды ультразвукового контроля

Операция контроля сварного шва позволяет определить расстояние до дефекта по временной шкале распространения отражения, размер амплитуды, ширины акустической волны.

В настоящем времени существует несколько способов, которыми проводится ультразвуковой контроль, основанием служит ГОСТ-23829, основные отличия происходят в оценке, регистрации данных:

  1. Диагностика теневым методом производится с использованием двух инструментов, установленных по разные стороны материала. Предназначение первого – излучать волны, второго принимать. Устанавливаются по перпендикулярной плоскости исследуемого сварного соединения. Процесс происходит путем излучения, контроля приема отражений, при тех случаях, когда возникает глухая зона, это означает, что результатом соединении имеется участок другой среды, шов принимается дефектным участком.
  2. Эхо — импульсный метод применяет один дефектоскоп, параметрами которого обусловлено направление, прем ультразвукового контроля. Технология отражения происходит путем отсвечивания отражения от участков с дефектами. Когда допускается прохождение волн напрямую, участок считается нормальным, если происходит отражение, возврат волны к дефектоскопу, это место помечается как дефект.
  3. В эхо — зеркальном методе используется такой же принцип работы, что и способом, приведенным выше. Отличительной особенностью является применение отражателя. Устанавливается оборудование под прямым углом, волны посылаются к материалу, в случае наличия повреждений отражаются на приемник. Данный тип проверки зачастую используют при поиске трещин, других вертикальных дефектов.
  4. Симбиоз зеркального и теневого метода контроля использует два прибора. Оба устанавливаются с одной стороны объекта, посылаются косые волны. Отражение происходит от сетки основного металла, в случае выявления нестандартных зон, место маркируется как дефект.
  5. В основе дельта метода ультразвукового контроля происходит излучение дефектом направленных отражений внутрь сварного шва. Волны разделяются на подкатегории зеркальных, трансформируемых, продольных и поперечных, приемником удается поймать не все типа волн. Метод не славится популярностью, т.к. требует настройки оборудования, продолжительной расшифровки результатов. Также при контроле дельта методом предъявляются жесткие требования по качеству очистки сварного соединения.

Наиболее популярными являются теневой и эхо – импульсный методы, остальные реже ввиду требуемой настройки оборудования и неудобного использования инструментов.

Как проводится ультразвуковая дефектоскопия

Процесс проверки ультразвуковым оборудованием относится практически ко всем типам металлов, чугуне, меди, стали и других легированных соединениях.

Существует определенный стандарт выполнения проверочных работ, которому необходимо придерживаться:

  • зачищается ржавчина, лакокрасочное покрытие со шва на расстоянии 5-7 см;
  • для получения достоверных результатов при ультразвуковом контроле сварных соединений, поверхности необходимо обработать турбинным, трансформаторным, либо машинным маслом;
  • контролер или прибор подстраивается под определенные параметры проверки;
  • стандартные настройки применяются при толщине сварного шва не более 2 см;
  • более толстые детали требуют применения АРД диаграмм;
  • проверка качества шва выполняется с помощью AVG или DSG параметров;
  • излучатель аппарата ультразвукового контроля перемещается вдоль шва зигзагом, проворачивается вокруг своей оси на небольшой угол;
  • искатель проводится по материалу до выявления максимально четкого, устойчивого сигнала, после чего разворачивается для поиска максимальной амплитуды;
  • контроль, проверку ультразвуковой дефектоскопии сварных швов производят согласно ГОСТу;
  • отклонения, дефекты прописываются в регистрационную таблицу.

Сварочные швы основываются на контроле, достаточным проверкой УЗД. При соответствующей квалификации оператора, правильно настроенном оборудовании, возможно получить исчерпывающий ответ о наличии дефектов. При тех случаях, когда применяются более подробные исследования сварных швов, используют гамма — дефектоскопию или рентгенодефектоскопию. Рамки применения теневого метода ультразвуковой дефектоскопии и других способов существуют, основные дефекты, которые возможно выявить с помощью УЗД:

  • расслоения наплавленного метала, различные поры;
  • трещины, неровности шва, а также не проваренные участки;
  • не сплавления, дефекты свище образного происхождения;
  • поврежденные окислами и коррозией участки, провисание металла;
  • несоответствующий химический состав соединения, поврежденный геометрически размер.

Ультразвуковой диагностике подвержены различные типы швов, плоские, продольные, кольцевые, сварные трубы и стыки, а также тавровые соединения. Методика проверки швов применяется не только крупными производственными предприятиями, а также на строительных площадках, при возведении помещений. Чаще всего УЗД используется:

  • в определении степени износа труб в магистралях, сварных соединений;
  • диагностика агрегатов, материалов в аналитических целях;
  • машиностроение, нефтегазовая, тепловая, химическая и атомная промышленности требуют использование технологии при обеспечении безопасности эксплуатации будущего изделия;
  • в соединениях сварного типа с крупнозернистой структурой, сложной геометрией;
  • установка и соединение изделий, подверженных крупным физическим, температурным нагрузкам, потребует проверки ультразвуковым контролем.

К работе с дефектоскопом допускаются лица, имеющие удостоверение, ознакомленные с правилами техники безопасности. Сварные стыки могут находиться в замкнутых пространствах, на высоте, труднодоступных местах, перед работой оператор проходит дополнительный инструктаж, работа контролируется отделом охраны труда. Работа производится с заземленным аппаратом, сечением провода не менее 2.5 мм. Категорически запрещается использовать оборудование вблизи сварочных работ в отсутствие специальной защиты.

Параметры оценки результатов

Аппарат настраивается путем определения наименьшего размера дефекта на эталонной детали. В роли эталонов выступают расположенные перпендикулярно направлению прозвучивания отверстия плоскодонного типа. Используются эталонные детали также с боковыми прорезями, зарубками.

Минимальным расстоянием между дефектами обуславливается разрешающая способность для эхо – метода, это делается, чтобы определить несколько различных дефектов.

Оценка качества сварных соединений при ультразвуковом контроле происходит по следующим параметрам:

  • условная протяженность;
  • ширина, высота дефекта, а также его форма;
  • амплитуда звуковой волны.

Длинна сварного дефекта определяется расстоянием перемещения излучателя по отношению к зафиксированному показанию сигналов с прибора. Способ определяется также для определения ширины дефекта. По разнице времени излученной, отраженной форме волны от дефекта определяется высота дефекта.

Определение точного значения дефекта при ультразвуковой проверке практически невозможно. Именно поэтому, за основу берется площадь эталонного изделия. Максимально допустимыми параметрами являются эквивалентные величины, которые сопоставляются с эталоном. Стоит учитывать, что вычисленная площадь, практически во всех случаях, меньше настоящего размера.

Результаты дефектоскопии ультразвукового типа оформляются в специально отведенном журнале, согласно ГОСТ-14782. При регистрации проверки в обязательном порядке проставляются:

  • индексы и наименование типа сварного стыка, длина подверженного контролю шва;
  • техническое задание, условие, при которых производилась проверка;
  • тип, наименование устройства;
  • частота колебаний в ГЦ;
  • условная, предельная чувствительность, углы ввода в металл, а также тип искателя;
  • результаты, дата проверки, а также фамилия оператора.

К описанию характеристик в журналах при проверке применяются сокращения. Прописная буква А указывает на то, что дефект и его протяженность не переступает технические условия. Буквы Б, В характеризуют протяженность дефекта по нарастающей. Цифрами следом обозначается количество дефектов, их размеры, глубину.

Определение формы дефекта происходит за счёт специальной методики, основой данных является эхо-сигнал, отображаемый дефектоскопом. Точность показаний определяется квалификацией оператора, его внимательностью, тщательность проведения. Измеряемые показатели должны быть в соответствии с инструкцией.

Достоинства и недостатки ультразвукового контроля труб

Ультразвуковым контролем возможно определить несоответствия во всех видах соединений, пайке, склейке, сварки и т.к. Процедура позволяет выявить большое количество недочетов:

  • поры, воздушные пустоты;
  • околошовные трещины, шлаковые отложения;
  • неоднородные химические вкрапления;
  • расслоения слоями наплавленного металла.

Основными преимуществами проведения неразрушимой акустической дефектоскопии являются:

  • возможность проверки соединений как разнородных, так и однородных металлов, материалов;
  • оценка качества соединения материалов, состоящих из неметаллов;
  • отсутствие разрушения, повреждения поверхности шва, после проверки обследуемый участок необходимо только закрасить;
  • отсутствие опасных воздействий на организм человека в сравнении с радио или рентген дефектоскопией.
  • Низкая себестоимость, высокая мобильность позволяют проводить контроль швов практически при любых полевых условиях.

Проведения работ со сложным оборудованием требует обученного, опытного персонала. Ультразвуковой контроль швов не исключение, а также требуется подготовка сварного шва по определенным показателям:

  • Контроль за создание шероховатости не ниже 5 класса, направление полос должно быть перпендикулярно направлению шва;
  • Исключение появления воздушного зазора путем нанесения масел или воды, в случае проверти вертикальной поверхности применяется густые массы и клейстеры.

Каждый из способов проверки имеет недостатки, проверка КЗД металлов не исключение. К основным отрицательным сторонам можно отнести:

  • При диагностике круглых изделий радиусом менее 10 см, необходимо применять специальные преобразователи пьезоэлектрического типа, радиус кривизны подошвы которых отличается от объекта на 10 процентов в большую или меньшую сторону;
  • Крупнозернистые структуры толщиной более 60 мм сложно диагностировать, в связи с затуханием отражения, рассеиванием колебаний при контроле. Такие материалы обычно состоят из аустенита или чугуна.
  • Малые изделия, детали со сложными конструктивными особенностями не возможно подвергнуть проверке УЗД;
  • Сложный процесс оценки, проверки материалов из неоднородных сталей;
  • Расположение в структуре шва дефекта на различной глубине, не дает возможности точно определить диаметр, высоту неровности.

Для проверки понадобится дефектоскопы и преобразователи, набор эталонов, образцов, предназначенных для калибровки и настройки оборудования. Определение расположения, места дефектов производится с помощью линейки координатного типа, вспомогательные приспособления понадобятся для зачистки, смазки проверяемого шва.

Проверенный сварной шов гарантирует надежность, прочность конструкции при эксплуатации. Существуют определенные нормативы, по которым изделие вводится в эксплуатацию или дорабатывается дальше.

В особенности проверка применяется в тяжелых условиях использования приспособлений.

Нет практически ни одной отрасли промышленности, где бы не осуществлялись сварочные работы. Подавляющее большинство металлоконструкций монтируются и соединяются между собой посредством Само собой, от качества проведения такого рода работ в перспективе зависит не только надёжность возводимого здания, сооружения, машины или какого-либо агрегата, но и безопасность людей, которые будут каким-то образом взаимодействовать с этими конструкциями. Поэтому для обеспечения надлежащего уровня выполнения подобных операций применяется ультразвуковой контроль сварочных швов, благодаря которому можно выявить наличие или же отсутствие различных дефектов в месте соединения металлических изделий. О данном передовом методе контроля и пойдет речь в нашей статье.

История возникновения

Ультразвуковая дефектоскопия как таковая была разработана в 30-х годах. Однако первый реально работающий прибор появился на свет лишь в 1945 году благодаря компании Sperry Products. На протяжении последующих двух десятилетий новейшая технология контроля получила всемирное признание, резко возросло количество производителей подобной техники.

Цена которого на сегодняшний день начинается от 100000 -130000 тысяч рублей, изначально в своей основе содержал вакуумные трубки. Такие приборы отличались громоздкостью и большим весом. Работали они исключительно от источников питания с переменным током. Но уже в 60-х годах, с появлением полупроводниковых схем, дефектоскопы значительно уменьшились в размерах и получили возможность работать от батарей, что позволило в итоге применять устройства даже в полевых условиях.

Шаг в цифровую реальность

На ранних этапах описываемые приборы применяли аналоговую обработку сигналов, за счет чего, как и многие другие подобные устройства, были подвержены дрейфу в момент калибровки. Но уже в 1984 году компания Panametrics дала путевку в жизнь первому портативному цифровому дефектоскопу под названием EPOCH 2002. С этого момента цифровые агрегаты стали высоконадежным оборудованием, идеально обеспечивающим необходимую стабильность калибровки и измерений. Ультразвуковой дефектоскоп, цена которого напрямую зависит от его технических характеристик и марки предприятия-изготовителя, получил также функцию регистрации данных и возможность передачи показаний на персональный компьютер.

В современных условиях все больше и больше вызывают интерес системы с фазированными решетками, в которых используется сложная технология на базе многоэлементных пьезоэлектрических элементов, генерирующих направленные лучи и создающих поперечные изображения, схожие с медицинской ультразвуковой визуализацией.

Сфера применения

Ультразвуковой метод контроля применяется в любом направлении промышленности. Применение его показало, что он может быть одинаково эффективно использован для проверки почти всех типов сварных соединений в строительстве, которые имеют толщину свариваемого основного металла более 4 миллиметров. Кроме того, метод активно используется для проверки соединения стыков газо- и нефтепроводов, различных гидравлических и водопроводных систем. А в таких случаях, как контроль швов большой толщины, полученных в результате ультразвуковая дефектоскопия - единственно приемлемый метод осуществления контроля.

Окончательное решение о том, годна ли деталь или сварочный шов к эксплуатации принимается на основе трех основополагающих показателей (критериев) - амплитуды, координат, условны размеров.

В целом же ультразвуковой контроль - именно тот метод, который является самым плодотворным с точки зрения формирования изображений в процессе изучения шва (детали).

Причины востребованности

Описываемый метод контроля с применением ультразвука хорош тем, что он обладает гораздо более высокой чувствительностью и достоверностью показаний в процессе обнаружения дефектов в виде трещин, меньшей стоимостью и высокой безопасностью в процессе использования по сравнению с классическими методами радиографического контроля. На сегодняшний день ультразвуковой контроль сварных соединений применяется в 70-80% случаев проверок.

Ультразвуковые преобразователи

Без применения этих устройств неразрушающий контроль ультразвуковой просто немыслим. Приспособления служат для формирования возбуждения, а также приема колебаний ультразвука.

Агрегаты бывают различными и подлежат классификации по:

  • Способу создания контакта с исследуемым изделием.
  • Способу подключения пьезоэлементов в электросхему самого дефектоскопа и дислокации электрода относительно пьезоэлемента.
  • Ориентации акустической относительно поверхности.
  • Числу пьезоэлементов (одно-, двух-, многоэлементные).
  • Ширине полосы рабочих частот (узкополосные - полоса менее одной октавы, широкополосные - полоса пропускания превышает одну октаву).

Измеряемые характеристики дефектов

В мире техники и промышленности всем руководит ГОСТ. Ультразвуковой контроль (ГОСТ 14782-86) в этом вопросе также не является исключением. Стандарт регламентирует, что дефекты измеряются по следующим параметрам:

  • Эквивалентной площади дефекта.
  • Амплитуде эхосигнала, которую определяют с учетом расстояния до дефекта.
  • Координатам дефекта в точке сваривания.
  • Условным размерам.
  • Условному расстоянию между дефектами.
  • Количеству дефектов на выделенной длине сварного шва или соединения.

Эксплуатация дефектоскопа

Неразрушающий контроль, коим является ультразвуковой, имеет собственную методику использования, которая гласит, что основной измеряемый параметр - амплитуда эхосигнала, полученная непосредственно от дефекта. Для дифференциации эхосигналов по величине амплитуды фиксируется так называемый браковочный уровень чувствительности. Он, в свою очередь, настраивается при помощи стандартного образца предприятия (СОП).

Начало эксплуатации дефектоскопа сопровождается его настройкой. Для этого выставляется браковочная чувствительность. После этого в процессе проводимых ультразвуковых исследований осуществляется сравнение полученного эхосигнала от обнаруженного дефекта с зафиксированным браковочным уровнем. В случае, если измеренная амплитуда будет превышать браковочный уровень, специалисты принимают решение, что такой дефект является недопустимым. Тогда шов или изделие бракуется и отправляется на доработку.

Наиболее часто встречающимися дефектами свариваемых поверхностей являются: непровар, неполное проплавление, растрескивание, пористость, шлаковые включения. Именно эти нарушения эффективно выявляет дефектоскопия с использованием ультразвука.

Варианты исследований ультразвуком

С течением времени процесс проверки получил несколько действенных методов изучения сварочных соединений. Ультразвуковой контроль предусматривает довольно большое количество вариантов акустического исследования рассматриваемых металлоконструкций, однако наибольшую популярность получили:

  • Эхо-метод.
  • Теневой.
  • Зеркально-теневой метод.
  • Эхо-зеркальный.
  • Дельта-метод.

Метод номер один

Чаще всего в промышленности и железнодорожном транспорте применяется эхо-импульсный метод. Именно благодаря ему диагностируется более 90% всех дефектов, что становится возможным за счет регистрации и анализа почти всех сигналов, отраженных от поверхности дефекта.

Сам по себе данный метод основывается на прозвучивании металлического изделия импульсами ультразвуковых колебаний с последующей их регистрацией.

Достоинствами метода являются:

Возможность одностороннего доступа к изделию;

Довольно высокая чувствительность к внутренним дефектам;

Высочайшая точность определения координат обнаруженного дефекта.

Однако имеются и недостатки, в числе которых:

Невысокая устойчивость к помехам поверхностных отражателей;

Сильная зависимость амплитуды сигнала от расположения дефекта.

Описываемая дефектоскопия подразумевает под собой посылку в изделие искателем ультразвуковых импульсов. Прием ответного сигнала происходит им же или же вторым искателем. При этом сигнал может отражаться как непосредственно от дефектов, так и от противоположной поверхности детали, изделия (шва).

Теневой метод

Он основывается на подробном анализе амплитуды ультразвуковых колебаний, передающихся от излучателя к приемнику. В случае, когда происходит уменьшение данного показателя, это сигнализирует о наличии дефекта. При этом чем больше размеры самого дефекта, тем будет меньше амплитуда получаемого приемником сигнала. Для получения достоверной информации следует располагать излучатель и приемник соосно на противоположных сторонах исследуемого объекта. Недостатками данной технологии можно считать низкую чувствительность в сравнении с эхо-методом и сложность ориентирования ПЭП (пьезоэлектрических преобразователей) относительно центральных лучей диаграммы направленности. Однако есть и достоинства, которые заключаются в высокой устойчивости к помехам, малой зависимости амплитуды сигнала от расположения дефекта, отсутствии мёртвой зоны.

Зеркально-теневой метод

Данный ультразвуковой контроль качества чаще всего используется для контроля сваренных между собой стыков арматуры. Основной признак того, что дефект обнаружен, заключается в ослаблении амплитуды сигнала, который отражается от расположенной напротив поверхности (чаще всего ее называет донной). Главное достоинство метода - чёткое обнаружение разнообразных дефектов, дислокацией которых является корень шва. Также метод характеризуется возможностью одностороннего доступа ко шву или детали.

Эхо-зеркальный метод

Самый эффективный вариант обнаружения вертикально расположенных дефектов. Проверка осуществляется с помощью двух ПЭП, которые перемещают по поверхности возле шва с одной стороны от него. При этом их движение производят таким образом, чтобы зафиксировать одним ПЭП сигнал, излучаемый от другого ПЭП и дважды отразившийся от имеющегося дефекта.

Главное преимущество метода: с его помощью можно оценить форму дефектов, величина которых превышает 3 мм и которые отклоняются в вертикальной плоскости более чем на 10 градусов. Самое главное - использовать ПЭП с одинаковой чувствительностью. Такой вариант активно применяется для проверки толстостенных изделий и их сварочных швов.

Дельта-метод

Указанный ультразвуковой контроль сварных швов использует ультразвуковую энергию, переизлученную дефектом. Поперечная волна, которая падает на дефект, отражается частично зеркально, частично преобразовывается в продольную, а также переизлучает дифрагированную волну. В итоге происходит улавливание требуемых волн ПЭП. Недостатком метода можно считать зачистку шва, довольно высокую сложность расшифровки полученных сигналов во время контроля сваренных соединений толщиной до 15 миллиметров.

Преимущества ультразвука и тонкости его применения

Исследования сварных соединений с помощью звука высокой частоты - это, по сути, неразрушающий контроль, ведь такой метод не способен нанести каких-либо повреждений исследуемому участку изделия, но при этом довольно точно определяет наличие дефектов. Также особого внимания заслуживает низкая стоимость проводимых работ и их высокая скорость выполнения. Немаловажно и то, что метод абсолютно безопасен для здоровья человека. Все исследования металлов и сварных швов на основе ультразвука проводятся в диапазоне от 0,5 МГц до 10 МГц. В некоторых случаях возможно проведение работ с использованием ультразвуковых волн, имеющих частоту 20 МГц.

Анализ сварного соединения посредством ультразвука должен обязательно сопровождаться проведением целого комплекса подготовительных мер, таких как очистка исследуемого шва или поверхности, нанесение на контролируемый участок специфических контактных жидкостей (гели специального назначения, глицерин, масло машинное). Все это делается для обеспечения надлежащего стабильного акустического контакта, который в итоге обеспечивает получение необходимой картинки на приборе.

Невозможность использования и недостатки

Ультразвуковой контроль абсолютно нерационально применять для обследования сварочных соединений металлов, имеющих крупнозернистую структуру (например, чугуна или же аустенитного шва с толщиной более 60 миллиметров). А все потому, что в таких случаях происходит достаточно большое рассеивание и сильное затухание ультразвука.

Также не представляется возможным однозначно полноценно охарактеризовать обнаруженный дефект (вольфрамовое включение, шлаковое включение и др.).

Метод ультразвуковой дефектоскопии металлов и других материалов впервые был разработан и практически осуществлен в Советском Союзе в 1928-1930 гг. проф. С. Я. Соколовым.

Свойства ультразвуковых волн .

Ультразвуковые волны представляют собой упругие колебания материальной среды, частота которых лежит за пределами слышимости в диапазоне от 20 кгц (волны низкой частоты) до 500 Мгц (волны высокой частоты).

Ультразвуковые колебания бывают продольные и поперечные. Если частицы среды перемещаются параллельно направлению распространения волны, то такая волна является продольной, если перпендикулярно-поперечной. Для отыскания дефектов в сварных швах используют в основном поперечные волны, направленные под углом к поверхности свариваемых деталей.

Ультразвуковые волны способны проникать в материальные среды на большую глубину, преломляясь и отражаясь при попадании на границу двух материалов с различной звуковой проницаемостью. Именно эта способность ультразвуковых волн используется в ультразвуковой дефектоскопии сварных соединений.

Ультразвуковые колебания могут распространяться в самых различных средах - воздухе, газах, дереве, металле, жидкостях.

Скорость распространения ультразвуковых волн C определяют по формуле:

где f - частота колебаний, гц;
λ - длина волны, см.

Для выявления мелких дефектов в сварных швах следует пользоваться коротковолновыми ультразвуковыми колебаниями, так как волна, длина которой больше размера дефекта, может не выявить его.

Получение ультразвуковых волн .

Ультразвуковые волны получают механическим, термическим, магнитострикционным (Магнитострикция - изменение размеров тела при намагничивании) и пьезоэлектрическим (Приставка «пьезо» означает «давить») способами.

Наиболее распространенным является последний способ, основанный на пьезоэлектрическом эффекте некоторых кристаллов (кварца, сегнетовой соли, титаната бария): если противоположные грани пластинки, вырезанной из кристалла, заряжать разноименным электричеством с частотой выше 20 000 гц, то в такт изменениям знаков зарядов пластинка будет вибрировать, передавая механические колебания в окружающую среду в виде ультразвуковой волны. Таким образом электрические колебания преобразовываются в механические.

В различных системах ультразвуковых дефектоскопов применяют генераторы высокой частоты, задающие на пьезоэлектрические пластинки электрические колебания от сотен тысяч до нескольких миллионов герц.

Пьезоэлектрические пластинки могут служить не только излучателями, но и приемниками ультразвука. В этом случае под действием ультразвуковых волн на гранях кристаллов-приемников возникают электрические заряды малой величины, которые регистрируются специальными усилительными устройствами.

Методы выявления дефектов ультразвуком .

Существуют в основном два метода ультразвуковой дефектоскопии: теневой и эхо-импульсный (метод отраженных колебаний.)

Рис. 1. Схемы проведения ультразвуковой дефектоскопии: а - теневым; б - эхо импульсным методом; 1 - щуп-излучатель; 2 - исследуемая деталь; 3 - щуп приемник; 4 - дефект .


При теневом методе (рис. 1, а) ультразвуковые волны, идущие через сварной шов от источника ультразвуковых колебаний (щупа-излучателя), при встрече с дефектом не проникают через него, так как граница дефекта является границей двух разнородных сред (металл - шлак или металл - газ). За дефектом образуется область так называемой «звуковой тени». Интенсивность ультразвуковых колебаний, принятых щупом-приемником, резко падает, а изменение величины импульсов на экране электронно-лучевой трубки дефектоскопа указывает на наличие дефектов. Этот метод имеет ограниченное применение, так как необходим двусторонний доступ к шву, а в ряде случаев требуется снимать усиление шва.

При эхо-импульсном методе щуп-излучатель посылает через импульсы ультразвуковых волн, которые при встрече с дефектом отражаются от него и улавливаются щупом-приемником. Эти импульсы фиксируются на экране электроннолучевой трубки дефектоскопа в виде пиков, свидетельствующих о наличии дефекта. Измеряя время от момента посылки импульса до приема обратного сигнала, можно определить и глубину залегания дефектов. Основное достоинство этого метода состоит в том, что можно проводить при одностороннем доступе к сварному шву без снятия усиления или предварительной обработки шва . Этот метод получил наибольшее применение при ультразвуковой дефектоскопии сварных швов.

Импульсные ультразвуковые дефектоскопы .

Осуществляется при помощи ультразвуковых дефектоскопов, которыми можно выявлять трещины» непровары, газовые и шлаковые включения в стыковых, угловых, тавровых и нахлесточных соединениях, выполненных дуговой, газовой и контактной сваркой. Контролировать можно как сварку сталей, так и сварку цветных металлов и их сплавов.

Рис. 2. Конструктивная схема призматического щупа: 1 - кольцо изоляционное; 2 - асбестовая прокладка; 3 - накладка контактная; 4 - втулка изоляционная; 5 - втулка; 6 - пластинка из титаната бария; 7 - корпус;8 - призма из плексигласа .


Электрическая схема дефектоскопов, состоящая из отдельных электронных блоков, смонтирована в металлическом кожухе, на передней панели которого находится экран электроннолучевой трубки и расположены рукоятки управления. Дефектоскопы укомплектованы призматическими щупами-искателями (рис. 2) с углами ввода ультразвукового луча 30, 40 и 50° (0,53; 0,7 и 0,88 рад). Придаются также и прямые щупы, при помощи которых ультразвуковые колебания вводятся перпендикулярно поверхности контролируемого изделия. Комплект щупов позволяет выбирать для каждого конкретного случая необходимую схему прозвучивания. Во всех щупах в качестве пьезоэлектрического преобразователя используются пластинки титаната бария.

В зависимости от количества щупов и схемы их включения ультразвуковые дефектоскопы могут быть двухщуповыми, в которых один щуп является излучателем, а другой приемником, или однощуповыми, где функция ввода и приема ультразвуковых колебаний выполняются одним щупом. Это возможно потому, что прием отраженного сигнала происходит во время пауз между импульсами, когда никаких других сигналов, кроме отраженных, на пьезоэлектрическую пластинку не поступает.

Рис. 3. Блок-схема импульсного ультразвукового дефектоскопа УЗД-7Н: 1 - задающий генератор; 2 - генератор импульсов; 3 - пьезоэлектрический щуп; 4 - генератор развертки; 5 - приемный усилитель; 6 - электроннолучевая трубка; 7 - контролируемое изделие .

В качестве индикаторов дефектов применяются электроннолучевые трубки. Ряд дефектоскопов оснащен также световым (электрической лампочкой на искательной головке щупа) и звуковым (динамиком и телефонными наушниками) индикаторами.

Типовая блок-схема импульсного ультразвукового дефектоскопа, работающего по однощуповой схеме, приведена на рис. 3.

Задающий генератор, питаемый переменным током, вырабатывает электрические колебания, передаваемые на генератор импульсов и пьезоэлектрический щуп. В последнем высокочастотные электрические колебания преобразуются в механические колебания ультразвуковой частоты и посылаются в контролируемое изделие. В интервалах между отдельными посылами высокочастотных импульсов пьезоэлектрический щуп при помощи электронного коммутатора подключается к приемному усилителю, который усиливает полученные от щупа отраженные колебания и направляет их на экран электроннолучевой трубки. Таким образом, пьезоэлектрический щуп попеременно работает как излучатель и приемник ультразвуковых волн.

Генератор развертки обеспечивает развертку электронного луча трубки, который прочерчивает на экране электроннолучевой трубки светящуюся линию с пиком начального импульса.

При отсутствии дефекта в контролируемом изделии импульс дойдет до нижней поверхности изделия, отразится от нее и возвратится в пьезоэлектрический щуп. В нем механические колебания ультразвуковой частоты снова преобразуются в высокочастотные электрические колебания, усиливаются в приемном усилителе и подаются на отклоняющие пластины электроннолучевой трубки. При этом на экране возникает второй пик донного импульса (как бы отраженного от дна изделия).

Если на пути прохождения ультразвука встретится дефект, то часть волн отразится от него раньше, чем донный сигнал достигнет пьезоэлектрического щупа. Эта часть волн усиливается приемным усилителем, подается на электроннолучевую трубку и на ее экране между начальным и донным импульсами возникнет пик импульса от дефекта.

Благодаря синхронной работе генератора развертки луча, генератора импульсов и других устройств дефектоскопа взаимное расположение импульсов на экране электроннолучевой трубки характеризует глубину расположения дефекта. Расположив на экране трубки масштабные метки времени, можно сравнительно точно определить глубину залегания дефекта.

Методика ультразвукового контроля .


Перед началом ультразвукового контроля зачищают поверхность сварного соединения на расстоянии 50-80 мм с каждой стороны шва, удаляя брызги металла, остатки шлака и окалину. Зачистку выполняют ручной шлифовальной машинкой, а при необходимости еще и напильником или наждачной шкуркой.

Рис. 4. Схема проведения ультразвукового контроля: а - перемещение призматического щупа по поверхности изделия; б - контроль прямым лучом; в - контроль отраженным лучом .

Чтобы обеспечить акустический контакт между щупом-искателем и изделием, зачищенную поверхность металла непосредственно перед контролем тщательно протирают и наносят на нее слой контактной смазки. В качестве смазки применяют автол марок 6, 10, 18, компрессорное, трансформаторное или машинное масло.

Рис. 5. Держатели призматических щупов: а - для контроля стыковых швов отраженным лучом; б - для контроля стыковых швов прямым лучом; в - для контроля угловых швов .

Затем проверяют правильность показаний дефектоскопа на эталонах сварных швов с заранее определенными дефектами.

Ультразвуковой контроль стыковых соединений проводят путем поочередной установки щупа по обеим сторонам проверяемого шва.

В процессе контроля щуп-искатель плавно перемещают вдоль обеих сторон шва по зигзагообразной линии (рис. 4, а), систематически поворачивая его на 5-10° в обе стороны для выявления различно расположенных дефектов.

Прозвучивание производят как прямым (рис. 4, б), так и отраженным (рис. 4, в) лучом. Стыковые соединения при толщине металла более 20 мм обычно проверяют прямым лучом. При толщине металла менее 20 мм усиление шва не дает возможности установить щуп так, чтобы ультразвуковой луч проходил через корень шва. В этих случаях осуществляют однократно или двукратно отраженными лучами. При толщине металла менее 8 мм его прозвучивают многократно отраженным лучом.

Рис. 6. Схема определения размеров дефекта в стыковом шве: а - протяженности l; б - высоты h .


Пределы перемещения щупа поперек шва зависят от угла ввода луча и способа прозвучивания и определяются по номограммам, прилагаемым к инструкции на эксплуатацию дефектоскопа. Чтобы обеспечить перемещение щупов в заданных пределах, их устанавливают в специальный держатель (рис. 5).

При обнаружении дефекта в сварном шве на экране дефектоскопа появляется импульс. Условную протяженность его измеряют длиной зоны перемещения щупаискателя вдоль шва, в пределах которой наблюдается появление и исчезнование импульса (рис. 6, а). Условную высоту дефекта определяют как разность глубин, измеренных в крайних положениях щупаискателя, в которых появляется и исчезает импульс при перемещении щупа перпендикулярно оси шва (рис. 6, б). Условную высоту дефектов, имеющих большую протяженность, измеряют в месте, где импульс от дефекта имеет наибольшую амплитуду.

Рис. 7. Конструктивная схема жидкостного глубиномера: 1 - генератор дефектоскопа; 2 - цилиндр; 3 - компенсирующий объем; 4 - глубиномер; 5 - механизм перемещения поршня; 6 - жидкость; 7 - поршень; 8 - пьезоэлектрическая пластинка .

Глубину залегания дефекта определяют при помощи глубиномеров. Жидкостной глубиномер (рис. 7) состоит из пьезоэлектрической пластинки, которая возбуждается от генератора дефектоскопа одновременно с основной излучающей пьезоэлектрической пластинкой щупаискателя. Эта пластинка помещена в цилиндр с компенсирующим объемом. Цилиндр наполнен жидкостью и имеет поршень, связанный со шкалой глубиномера. При прозвучивании сварного шва на экране электроннолучевой трубки вместе с начальным и донным сигналом появляется так называемый служебный импульс, отраженный от поршня цилиндра глубиномера. Положение его на экране трубки дефектоскопа определяется положением поршня в цилиндре. Передвигая поршень, совмещают служебный импульс с импульсом, отраженным от дефекта, и по шкале глубиномера определяют глубину залегания дефекта. При совмещении поршня с донным импульсом можно определить толщину металла. Подобные глубиномеры могут быть присоединены к любому ультразвуковому импульсному дефектоскопу.

Повышения скорости контроля можно достичь применением несложных устройств (рис. 8), позволяющих осуществлять перемещение дефектоскопа вдоль шва и возвратно-поступательное движение щупа. Щуп-искатель устанавливается на тележке устройства и соединяется с ультразвуковым дефектоскопом. На этой же тележке находится механизм передвижения, состоящий из электродвигателя мощностью 12 вт, червячных пар и кривошипного механизма.

Рис. 8. Схема автоматизированного контроля стыков трубопроводов с помощью специального приспособления: 1 - контрольный механизм; 2 - труба; 3 - роликовая цепь; 4 - коробка со щупом; 5 - ультразвуковой дефектоскоп .


Значительно увеличивается надежность и скорость контроля при использовании автоматического ультразвукового дефектоскопа ДАУЗ-169, позволяющего контролировать сварные соединения при толщине листов от 6 до 16 мм. Он представляет собой датчик, установленный на автоматически передвигающейся каретке, соединенной гибким кабелем со шкафом с электронными блоками.

Дефекты регистрируются записью на диаграммной ленте и краскоотметчиком на контролируемом шве, работа которого дублируется световой сигнализацией. Скорость контроля составляет 1 м/мин. Применение его значительно увеличивает надежность и производительность процесса контроля сварных швов.

Оформление результатов контроля .

Результаты ультразвуковой дефектоскопии согласно ГОСТ 14782-69 фиксируют в журнале или в заключении, обязательно указывая:

а) тип сварного соединения; индексы, присвоенные данному изделию и сварному соединению; длину проконтролированного участка шва;

б) технические условия, по которым выполнялась дефектоскопия;

в) тип дефектоскопа;

г) частоту ультразвуковых колебаний;

д) угол ввода луча в контролируемый металл или тип искателя, условную или предельную чувствительность;

е) участки шва, которые не подвергались дефектоскопии;

ж) результаты дефектоскопии;

з) дату дефектоскопии;

и) фамилию оператора.

При сокращенном описании результатов дефектоскопии каждую группу дефектов указывают отдельно.

Характеристика протяженности дефекта обозначается одной из букв А, Б, В. Цифрами обозначают: количество дефектов в шт.; условную протяженность дефекта в мм; наибольшую глубину залегания дефекта в мм; наибольшую условную высоту дефекта в мм.

Буква А указывает, что протяженность дефекта не превышает допускаемую техническими условиями. Буква Б используется для характеристики дефекта большей протяженности, чем типа А. Буквой В обозначают группу дефектов, отстоящих друг от друга на расстоянии не более величины условной протяженности для дефектов типа А.

Ниже приводится пример сокращенной записи результатов дефектоскопии в журнале или в заключении.

На участке шва сварного соединения С15 (ГОСТ 5264-69), обозначенном индексом МН-2, длиной 800 мм обнаружены: два дефекта типа А на глубине 12 мм, один дефект типа Б условной протяженностью 16 мм на глубине 14-22 мм, условной высотой 6 мм и один дефект типа В условной протяженностью 25 мм на глубине 5-8 мм.

Сокращенная запись результатов испытания выглядит так:

С15, МН-2, 800; А-2-12; Б-1-16-22-6; В-1-25-8.

Техника безопасности при ультразвуковом контроле .

К работе с ультразвуковыми дефектоскопами допускают лиц, прошедших инструктаж по правилам техники безопасности и имеющих соответствующее удостоверение. Перед проведением контроля на большой высоте, в труднодоступных местах или внутри металлоконструкций оператор проходит дополнительный инструктаж, а его работу контролирует служба техники безопасности.

Ультразвуковой дефектоскоп при работе заземляют медным проводом сечением не менее 2,5 мм 2 . Работать с незаземленным дефектоскопом категорически запрещается. При отсутствии на рабочем месте розетки подключать и отключать дефектоскоп может только дежурный электрик.

Запрещается проводить ультразвуковой контроль сварных соединений вблизи сварочных работ при отсутствии защиты от лучей электрической дуги.

Физической основой ультразвуковой дефектоскопии явля­ется свойство ультразвуковых волн отражаться от несплошностей.

Действие приборов ультразвукового контроля основано на посылке ультразвуковых импульсов и регистрации отражен­ных эхосигналов или ослабленных сигналов.

Посылка ультразвуковых импульсов и прием эхо-сигналов производится пьезоэлементами (пьезоэлектри­ческими преобразователями), преобразующими переменное электрическое поле в акустическое поле и наоборот.

В зависимости от типа дефекта ввод ультразвуковых волн осуществляется перпендикулярно или под определенным утлом к поверхности изделия. При контроле толщины стенки трубы и контроле дефектов, параллельных стенке трубы (расслоений, неметаллических включений), ультразвуковые колебания вво­дятся по нормали к поверхности трубы. При ручном контроле для этого используются прямые пьезопреобразователи-искатели. Толщина стенки трубы или расстояние до несплошности определяется путем измерения времени прохождения зонди­рующего (т.е. излучаемого в изделие) импульса от наружной до внутренней поверхности трубы или от наружной поверхности до несплошности и отраженного импульса в обратном направлении (5850 м/с для продольных волн).

Существует несколько методов (схем) ультразвукового контроля. Наиболее распространенным является импульсный эхометод, или просто эхометод. Метод основан на регистра­ции ультразвуковых волн, отраженных от несплошности при импульсном прозвучивании. Амплитуда эхосигнала при этом пропорциональна площади несплошности, служащей отража­телем.

Ультразвуковой контроль проводится для выявления внутренних и выходящих на поверхность протяженных (ими могут быть: непровары, несплавления, трещины, подрезы, цепочки скопления пор и включений) и не протяженных (ими могут быть: одиночные газовые поры, шлаковые включения) дефектов.

Перед проведением контроля следует произвести очистку поверхности от изоляционного покрытия, пыли, грязи, окалины, застывших брызг металла, забоин и других неровностей и нанести контактную смазку.

Контроль сварных соединений осуществляют путем перемещения (сканирования) ПЭП по поверхности околошовной зоны сваренных элементов параллельно сварному шву с одновременным возвратно-поступательным движением в направлении, перпендикулярном ему.

Признаком обнаружения дефекта служит появление на поисковом уровне чувствительности эхо-сигнала на экране дефектоскопа. При появлении признаков обнаружения дефекта следует зафиксировать преобразователь в положении, при котором амплитуда наблюдаемого сигнала максимальна, и определить координаты и параметры дефекта.

Дефекты по результатам ультразвукового контроля относят к одному из следующих видов:


непротяженные (одиночные поры, компактные шлаковые включения);

протяженные (трещины, непровары, несплавления, удлиненные шлаковые включения и поры);

цепочки и скопления (цепочки и скопления пор и шлака - три и более дефекта).

Акустические колебания и волны.

Акустическими волнами называют колебания частичек среды в упругой среде. Различают четыре основных типа волн: продольные, поперечные поверхностные и нормальные волны.

Рис. 18. Продольная волна.

Классификация методов контроля

Известно много акустических методов неразрушающего контроля, некоторые из которых применяются в нескольких вариантах. Классификация акустических методов показана на рисунке 19. Их делят на две большие группы - активные и пассивные методы. Активные методы основаны на излучении и приеме упругих волн, пассивные - только на приеме волн, источником которых служит сам контролируемый объект.

Активные методы делят на методы прохождения, отражения, комбинированные (использующие как прохождение, так и отражение), импедансные и методы собственных частот.

Методы прохождения используют излучающие и приемные преобразователи, расположенные по разные или по одну сторону контролируемого изделия. Применяют импульсное или (реже) непрерывное излучение и анализируют сигнал, прошедший через контролируемый объект.

В методах отражения используют как один, так и два преобразователя; применяют импульсное излучение. К этой подгруппе относят следующие методы дефектоскопии:

Рис. 19. Классификация акустических методов контроля

Эхо-метод (рис. 20, а ) основан на регистрации эхо-сигналов от дефекта. На экране индикатора обычно наблюдают посланный (зондирующий) импульс I , импульс III , отраженный от противоположной поверхности (дна) изделия (донный сигнал) и эхо-сигнал от дефекта II . Время прихода импульсов II и III пропорционально глубине залегания дефекта и толщине изделия. При совмещенной схеме контроля (рис. 20, а ) один и тот же преобразователь выполняет функции излучателя и приемника. Если эти функции выполняют разные преобразователи, то схему называют раздельной.

Рис. 20. Методы отражения:

а - эхо; б – эхо - зеркальный; в - дельта-метод;г - дифракционно - временной; д - реверберационный:

1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приемник;5 - усилитель; 6 - синхронизатор; 7 – индикатор

Эхо-зеркальный метод основан на анализе сигналов, испытавших зеркальное отражение от донной поверхности изделия и дефекта, т.е. прошедших путь АВСД (рис. 20, б ). Вариант этого метода, рассчитанный на выявление вертикальных дефектов в плоскости ЕF , называют методом тандем . Для его реализации при перемещении преобразователей А и D поддерживают постоянным значение ; для получения зеркального отражения от невертикальных дефектов, значение варьируют. Один из вариантов метода, называемый "косой тандем" , предусматривает расположение излучателя и приемника не в одной плоскости (рис. 20, б , вид в плане внизу), а в разных плоскостях, но таким образом, чтобы принимать зеркальное отражение от дефекта. Еще один вариант, называемый К-метод , предусматривает расположение преобразователей по разные стороны изделия, например, располагают приемник в точке С.

Дельта-метод (рис. 20, в ) основан на приеме преобразователем для продольных волн 4 , расположенным над дефектом, рассеянных на дефекте волн, излученных преобразователем для поперечных волн 2 .

Дифракционно-временной метод (рис. 20, г ), в котором излучатели 2 и , приемники 4 и 4 ¢ излучают и принимают либо продольные, либо поперечные волны, причем могут излучать и принимать разные типы волн. Преобразователи располагают так, чтобы получать максимумы эхо-сигналов волн, дифрагированных на концах дефекта. Измеряют амплитуды и время прихода сигналов от верхнего и нижнего концов дефекта.

Реверберационный метод (рис. 20, д ) использует влияние дефекта на время затухания многократно отраженных ультразвуковых импульсов в контролируемом объекте. Например, при контроле клееной конструкции с наружным металлическим слоем и внутренним полимерным слоем дефект соединения препятствует передаче энергии во внутренний слой, что увеличивает время затухания многократных эхо-сигналов во внешнем слое. Отражения импульсов в полимерном слое обычно отсутствуют вследствие большого затухания ультразвука в полимере.

В комбинированных методах используют принципы как прохождения, так и отражения акустических волн.

Зеркально-теневой метод основан на измерении амплитуды донного сигнала. На рисунке 21, а отраженный луч условно смещен в сторону. По технике выполнения (фиксирует эхо-сигнал) его относят к методам отражения, а по физической сущности контроля (измеряют ослабление сигнала дважды прошедшего изделие в зоне дефекта) он близок к теневому методу.

Эхо-теневой метод основан на анализе как прошедших, так и отраженных волн (рис. 21, б ).

В эхо-сквозном методе фиксируют сквозной сигнал I , сигнал II , испытавший двукратное отражение в изделии, а в случае появления полупрозрачного дефекта - также сигналы III и IV , соответствующие отражениям волн от дефекта и испытавших также отражение от верхней и нижней поверхностей изделия. Большой непрозрачный дефект обнаруживают по исчезновению или сильному уменьшению сигнала I , т.е. теневым методом, а также сигнала II . Полупрозрачные или небольшие дефекты обнаруживают по появлению сигналов III и IV , которые являются главными информационными сигналами.

Рис. 21. Комбинированные методы, использующие прохождение и отражение: а - зеркально-теневой; б – эхо - теневой; в – эхо - сквозной:2 - излучатель; 4 - приемник; 3 - объект контроля

Методы собственных частот основаны на измерении этих частот (или спектров) колебаний контролируемых объектов. Собственные частоты измеряют при возбуждении в изделиях как вынужденных, так и свободных колебаний. Свободные колебания обычно возбуждают механическим ударом, вынужденные - воздействием гармонической силы меняющейся частоты.

Импедансные методы используют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. Обычно оценивают механический импеданс , где и - комплексные амплитуды возмущающей силы и колебательной скорости, соответственно. В отличие от характеристического импеданса , являющегося параметром среды, механический импеданс характеризует конструкцию. В импедансных методах используют изгибные и продольные волны.

Пассивные акустические методы основаны на анализе упругих колебаний волн, возникающих в самом контролируемом объекте.

Наиболее характерным пассивным методом является акустико-эмиссионный метод. Явление акустической эмиссии состоит в том, что упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин под влиянием внешней нагрузки, аллотропические превращения при нагреве или охлаждении, движение скоплений дислокаций,- наиболее характерные источники акустической эмиссии. Контактирующие с изделием пьезопреобразователи принимают упругие волны и позволяют установить место их источника (дефекта).

Пассивными акустическими методами являются вибрационно-диагностический и шумодиагностический. При первом анализируют параметры вибраций какой-либо отдельной детали или узла (ротора, подшипников, лопатки турбины) с помощью приемников контактного типа, при втором - изучают спектр шумов работающего механизма, обычно с помощью микрофонных приемников.

По частотному признаку акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков кГц), ультразвуковом диапазонах частот. Ко вторым - колебания в высокочастотном ультразвуковом диапазоне частот: обычно от нескольких сот кГц до 20 МГц. Высокочастотные методы обычно называют ультразвуковыми.

Области применения

Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод. Около 90% объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения размеров изделий. Измеряют время прихода донного сигнала и, зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия неизвестна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а по ним определяют физико-механические свойства материалов.

Эхо-зеркальный метод также применяют для выявления дефектов, ориентированных перпендикулярно поверхности ввода. При этом он обеспечивает более высокую чувствительность к таким дефектам, но требует, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности (рис. 21, б ). В рельсах, например, это требование не выполняется, поэтому там возможно применение только зеркально-теневого метода. Дефект может быть выявлен совмещенным наклонным преобразователем, расположенным в точке А. Однако, в этом случае зеркально-отраженная волна уходит в сторону и на преобразователь погадает лишь слабый рассеянный сигнал. Преобразователи, расположенные в точках С или D обнаруживают дефект с высокой чувствительностью.

Эхо-зеркальный метод в варианте "тандем" используют для выявления вертикальных трещин и непроваров при контроле сварных соединений. Дефекты некоторых видов сварки, например, непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны, но такие дефекты хорошо выявляются эхо-зеркальным методом. Дефекты округлой формы (шлаковые включения, поры) дают большой рассеянный сигнал и хорошо регистрируются совмещенным преобразователем в точке А, в то же время зеркальное отражение от них слабое. В результате сравнения отраженных сигналов в точках А и D определяют форму дефекта сварного соединения.

Вариант "косой тандем" применяют, когда расположение преобразователей в одной плоскости затруднительно. Его используют, например, для выявления поперечных трещин в сварных швах. Преобразователи в этом случае располагают по разные стороны валика усиления шва. Углы и выбирают либо малыми (не более 10°), либо большими (св. 35°) для предотвращения трансформации поперечных волн в продольные. При угле меньше 10° трансформация мала. Угол 35° и больше превосходит третье критическое значение и трансформация отсутствует. Существуют варианты с . Например, излучают поперечную волну с , а принимают трансформированную продольную волну.

Дельта и дифракционно-временной методы также используют для получения дополнительной информации о дефектах при контроле сварных соединений. В варианте, показанном на рисунке 2,в , излучают поперечные, а принимают продольные волны. Эффективная трансформация волн на дефекте произойдет, если угол падения на плоский дефект меньше третьего критического, либо если продольная волна возникает в результате рассеяния на дефекте. Для создания хорошего контакта приемного прямого преобразователя с поверхностью сварного соединения валик усиления зачищают. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что важно для его автоматической регистрации.

Загрузка...
Top