Топливные элементы: виды и принцип работы. Топливный элемент как альтернатива "альтернативной" энергетики Топливные элементы на водороде принцип работы

Топливные элементы Топливные элементы относятся к химическим источникам тока. Они осуществляют прямое превращение энергии топлива в электричество минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.

Биохимики установили, что биологический водородно-кислородный топливный элемент «вмонтирован» в каждую живую клетку (см. гл.2).

Источником водорода в организме служит пища – жиры, белки и углеводы. В желудке, кишечнике, клетках она в конечном счете раскладывается до мономеров, которые, в свою очередь, после ряда химических превращений дают водород, присоединенный к молекуле-носителю.

Кислород из воздуха попадает в кровь через легкие, соединяется с гемоглобином и разносится по всем тканям. Процесс соединения водорода с кислородом составляет основу биоэнергетики организма. Здесь, в мягких условиях (комнатная температура, нормальное давление, водная среда), химическая энергия с высоким КПД преобразуется в тепловую, механическую (движение мышц), электричество (электрический скат), свет (насекомые излучающие свет).

Человек в который раз повторил созданное природой устройство получения энергии. В то же время этот факт говорит о перспективности направления. Все процессы в природе очень рациональны, поэтому шаги по реальному использованию ТЭ вселяют надежду на энергетическое будущее.

Открытие в 1838 году водородно-кислородного топливного элемента принадлежит английскому ученому У. Грову. Исследуя разложение воды на водород и кислород он обнаружил побочный эффект – электролизер вырабатывал электрический ток.

Что горит в топливном элементе?
Ископаемое топливо (уголь, газ и нефть) состоит в основном из углерода. При сжигании атомы топлива теряют электроны, а атомы кислорода воздуха приобретают их. Так в процессе окисления атомы углерода и кислорода соединяются в продукты горения – молекулы углекислого газа. Этот процесс идет энергично: атомы и молекулы веществ, участвующих в горении, приобретают большие скорости, а это приводит к повышению их температуры. Они начинают испускать свет – появляется пламя.

Химическая реакция сжигания углерода имеет вид:

C + O2 = CO2 + тепло

В процессе горения химическая энергия переходит в тепловую энергию благодаря обмену электронами между атомами топлива и окислителя. Этот обмен происходит хаотически.

Горение – обмен электронов между атомами, а электрический ток – направленное движение электронов. Если в процессе химической реакции заставить электроны совершать работу, то температура процесса горения будет понижаться. В ТЭ электроны отбираются у реагирующих веществ на одном электроде, отдают свою энергию в виде электрического тока и присоединяются к реагирующим веществам на другом.

Основа любого ХИТ – два электрода соединенные электролитом. ТЭ состоит из анода, катода и электролита (см. гл. 2). На аноде окисляется, т.е. отдает электроны, восстановитель (топливо CO или H2), свободные электроны с анода поступают во внешнюю цепь, а положительные ионы удерживаются на границе анод-электролит (CO+, H+). С другого конца цепи электроны подходят к катоду, на котором идет реакция восстановления (присоединение электронов окислителем O2–). Затем ионы окислителя переносятся электролитом к катоду.

В ТЭ вместе сведены вместе три фазы физико-химической системы:

газ (топливо, окислитель);
электролит (проводник ионов);
металлический электрод (проводник электронов).
В ТЭ происходит преобразование энергии окислительно-восстановительной реакции в электрическую, причем, процессы окисления и восстановления пространственно разделены электролитом. Электроды и электролит в реакции не участвуют, но в реальных конструкциях со временем загрязняются примесями топлива. Электрохимическое горение может идти при невысоких температурах и практически без потерь. На рис. p087 показана ситуация в которой в ТЭ поступает смесь газов (CO и H2), т.е. в нем можно сжигать газообразное топливо (см. гл. 1). Таким образом, ТЭ оказывается «всеядным».

Усложняет использование ТЭ то, что для них топливо необходимо «готовить». Для ТЭ получают водород путем конверсии органического топлива или газификации угля. Поэтому структурная схема электростанции на ТЭ, кроме батарей ТЭ, преобразователя постоянного тока в переменный (см гл. 3) и вспомогательного оборудования включает блок получения водорода.

Два направления развития ТЭ

Существуют две сферы применения ТЭ: автономная и большая энергетика.

Для автономного использования основными являются удельные характеристики и удобство эксплуатации. Стоимость вырабатываемой энергии не является основным показателем.

Для большой энергетики решающим фактором является экономичность. Кроме того, установки должны быть долговечными, не содержать дорогих материалов и использовать природное топливо при минимальных затратах на подготовку.

Наибольшие выгоды сулит использование ТЭ в автомобиле. Здесь, как нигде, скажется компактность ТЭ. При непосредственном получении электроэнергии из топлива экономия последнего составит порядка 50%.

Впервые идея использования ТЭ в большой энергетике была сформулирована немецким ученым В. Освальдом в 1894 году. Позднее получила развитие идея создания эффективных источников автономной энергии на основе топливного элемента.

После этого предпринимались неоднократные попытки использовать уголь в качестве активного вещества в ТЭ. В 30-е годы немецкий исследователь Э. Бауэр создал лабораторный прототип ТЭ с твердым электролитом для прямого анодного окисления угля. В это же время исследовались кислородно-водородные ТЭ.

В 1958 году в Англии Ф. Бэкон создал первую кислородно-водородную установку мощностью 5 кВт. Но она была громоздкой из-за использования высокого давления газов (2...4 МПа).

С 1955 года в США К. Кордеш разрабатывал низкотемпературные кислородно-водородные ТЭ. В них использовались угольные электроды с платиновыми катализаторами. В Германии Э. Юст работал над созданием неплатиновых катализаторов.

После 1960 года были созданы демонстрационные и рекламные образцы. Первое практическое применение ТЭ нашли на космических кораблях «Аполлон». Они были основными энергоустановками для питания бортовой аппаратуры и обеспечивали космонавтов водой и теплом.

Основными областями использования автономных установок с ТЭ были военные и военно-морские применения. В конце 60-х годов объем исследований по ТЭ сократился, а после 80-х вновь возрос применительно к большой энергетике.

Фирмой VARTA разработаны ТЭ с использованием двухсторонних газодифузионных электродов. Электроды такого типа называют «Янус». Фирма Siemens разработала электроды с удельной мощностью до 90 Вт/кг. В США работы по кислородно-водородным элементам проводит United Technology Corp.

В большой энергетике очень перспективно применение ТЭ для крупномасштабного накопления энергии, например, получение водорода (см. гл. 1). (солнце и ветер) отличаются рассредоточеностью (см гл. 4). Их серьезное использование, без которого в будущем не обойтись, немыслимо без емких аккумуляторов, запасающих энергию в той или иной форме.

Проблема накопления актуальна уже сегодня: суточные и недельные колебания нагрузки энергосистем заметно снижают их эффективность и требуют так называемых маневренных мощностей. Один из вариантов электрохимического накопителя энергии – топливный элемент в сочетании с электролизерами и газгольдерами*.

* Газгольдер [газ + англ. holder держатель] – хранилище для больших количеств газа.

Первое поколение ТЭ

Наибольшего технологического совершенства достигли среднетемпературные ТЭ первого поколения, работающие при температуре 200...230°С на жидком топливе, природном газе либо на техническом водороде*. Электролитом в них служит фосфорная кислота, которая заполняет пористую углеродную матрицу. Электроды выполнены из углерода, а катализатором является платина (платина используется в количествах порядка нескольких граммов на киловатт мощности).

* Технический водород – продукт конверсии органического топлива, содержащий незначительные примеси окиси углерода.

Одна таких электростанций введена в строй в штате Калифорния 1991 году. Она состоит из восемнадцати батарей массой по 18 т каждая и размещается в корпусе диаметром чуть более 2 м и высотой около 5 м. Продумана процедура замены батареи с помощью рамной конструкции движущейся по рельсам.

Две электростанции на ТЭ США поставили в Японию. Первая из них была пущена еще в начале 1983 года. Эксплуатационные показатели станции соответствовали расчетным. Она работала с нагрузкой от 25 до 80% от номинальной. КПД достигал 30...37% – это близко к современным крупным ТЭС. Время ее пуска из холодного состояния – от 4 ч до 10 мин., а продолжительность изменения мощности от нулевой до полной составляет всего 15 с.

Сейчас в разных районах США испытываются небольшие теплофикационные установки мощностью по 40 кВт с коэффициентом использования топлива около 80%. Они могут нагревать воду до 130°С и размещаются в прачечных, спортивных комплексах, на пунктах связи и т.д. Около сотни установок уже проработали в общей сложности сотни тысяч часов. Экологическая чистота электростанций на ТЭ позволяет размещать их непосредственно в городах.

Первая топливная электростанция в Нью-Йорке, мощностью 4,5 МВт, заняла территорию в 1,3 га. Теперь для новых станций с мощностью в два с половиной раза большей нужна площадка размером 30x60 м. Строятся несколько демонстрационных электростанций мощностью по 11 МВт. Поражают сроки строительства (7 месяцев) и площадь (30х60 м), занимаемая электростанцией. Расчетный срок службы новых электростанций – 30 лет.

Второе и третье поколение ТЭ

Лучшими характеристиками обладают уже проектирующиеся модульные установки мощностью 5 МВт со среднетемпературными топливными элементами второго поколения. Они работают при температурах 650...700°С. Их аноды делают из спеченных частиц никеля и хрома, катоды – из спеченного и окисленного алюминия, а электролитом служит расплав смеси карбонатов лития и калия. Повышенная температура помогает решить две крупные электрохимические проблемы:

снизить «отравляемость» катализатора окисью углерода;
повысить эффективность процесса восстановления окислителя на катоде.
Еще эффективнее будут высокотемпературные топливные элементы третьего поколения с электролитом из твердых оксидов (в основном двуокиси циркония). Их рабочая температура – до 1000°С. КПД энергоустановок с такими ТЭ близок к 50%. Здесь в качестве топлива пригодны и продукты газификации твердого угля со значительным содержанием окиси углерода. Не менее важно, что сбросовое тепло высокотемпературных установок можно использовать для производства пара, приводящего в движение турбины электрогенераторов.

Фирма Vestingaus занимается топливными элементами на твердых оксидах с 1958 года. Она разрабатывает энергоустановки мощностью 25...200 кВт, в которых можно использовать газообразное топливо из угля. Готовятся к испытаниям экспериментальные установки мощностью в несколько мегаватт. Другая американская фирма Engelgurd проектирует топливные элементы мощностью 50 кВт работающие на метаноле с фосфорной кислотой в качестве электролита.

В создание ТЭ включается все больше фирм во всем мире. Американская United Technology и японская Toshiba образовали корпорацию International Fuel Cells. В Европе топливными элементами занимаются бельгийско-нидерландский консорциум Elenko, западногерманская фирма Siemens, итальянская Fiat, английская Jonson Metju.

Виктор ЛАВРУС.

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП об экологически безопасных технологиях, новой науке и научных открытиях вы можете найти там, где вам максимально удобно

На них работают космические корабли Национального управления по аэронавтике и космическому пространству США (НАСА). Они обеспечивают электроэнергией компьютеры Первого национального банка в Омахе. Они используются на некоторых общественных городских автобусах в Чикаго.

Это все - топливные элементы. Топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию без процесс горения - химическим путем, почти так же, как батарейки. Разница лишь в том, что в них используются другие химические вещества, водород и кислород, а продуктом химической реакции является вода. Можно использовать и природный газ, однако при использовании углеводородного топлива, конечно же, неизбежен определенный уровень выбросов двуокиси углерода.

Поскольку топливные элементы могут работать с высоким КПД и без вредных выбросов, с ними связаны большие перспективы в отношении экологически рационального источника энергии, который будет способствовать снижению выбросов парниковых газов и других загрязняющих веществ. Основное препятствие на пути широкомасштабного использования топливных элементов это их высокая стоимость по сравнению с другими устройствами, вырабатывающими электричество или приводящими в движение транспортные средства.

История развития

Первые топливные элементы были продемонстрированы сэром Вильямом Гровзом в 1839 г. Гровз показал, что процесс электролиза - расщепление воды на водород и кислород под действием электрического тока - обратим. То есть водород и кислород могут быть соединены химическим путем с образованием электричества.

После того, как это было продемонстрировано, многие ученые бросились с усердием изучать топливные элементы, но изобретение двигателя внутреннего сгорания и развитие инфраструктуры добычи запасов нефти во второй половине девятнадцатого века оставило развитие топливных элементов далеко позади. Еще больше сдерживала развитие топливных элементов их высокая стоимость.

Всплеск развития топливных элементов пришелся на 50-е годы, когда НАСА обратилась к ним в связи с возникшей потребностью в компактном электрогенераторе для космических полетов. Были вложены соответствующие средства, и в результате полеты Apollo и Gemini были осуществлены на топливных элементах. Космические корабли также работают на топливных элементах.

Топливные элементы до сих пор в значительной степени являются экспериментальной технологией, но уже несколько компаний продают их на коммерческом рынке. Только за последние почти десять лет были достигнуты значительные успехи в области коммерческой технологии топливных элементов.

Как работает топливный элемент

Топливные элементы похожи на аккумуляторные батареи - они вырабатывают электричество в результате химической реакции. В отличие от этого, двигатели внутреннего сгорания сжигают топливо и таким образом вырабатывают тепло, которое затем преобразуется в механическую энергию. Если только тепло от выхлопных газов не используется каким-либо образом (например, для обогрева или кондиционирования воздуха), то можно сказать, что КПД двигателя внутреннего сгорания довольно низкий. Например, ожидается, что КПД топливных элементов при использовании в транспортном средстве - проект, который сейчас находится в стадии разработки, - будет выше КПД современных типичных двигателей на бензине, используемых в автомобилях, более чем в два раза.

Хотя и аккумуляторные батареи, и топливные элементы вырабатывают электричество химическим путем, они выполняют две совершенно разные функции. Батареи - устройства с накопленной энергией: электричество, которое они вырабатывают, является результатом химической реакции вещества, которое уже находится внутри них. Топливные элементы не хранят энергию, а преобразуют часть энергии топлива, поставляемого извне, в электричество. В этом отношении топливный элемент скорее похож на обычную электростанцию.

Существует несколько различных типов топливных элементов. Наипростейший топливный элемент состоит из специальной мембраны, известной как электролит. По обе стороны мембраны нанесены порошкообразные электроды. Такая конструкция - электролит, окруженный двумя электродами, - представляет собой отдельный элемент. Водород поступает на одну сторону (анод), а кислород (воздух) на другую (катод). На каждом электроде происходят разные химические реакции.

На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, которые способствуют протеканию реакции диссоциации:

2H2 ==> 4H+ + 4e-.

H2 = двуатомная молекула водорода, форма, в

которой водород присутствует в виде газа;

H+ = ионизированный водород, т.е. протон;

е- = электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу, такого как электродвигатель или лампочка. Это устройство обычно называется "нагрузкой".

С катодной стороны топливного элемента протоны (которые прошли через электролит) и электроны (которые прошли через внешнюю нагрузку) "воссоединяются" и вступают в реакцию с подаваемым на катод кислородом с образованием воды, H2O:

4H+ + 4e- + O2 ==> 2H2O.

Суммарная реакция в топливном элементе записывается так:

2H2 + O2 ==> 2H2O.

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива, такого как природный газ, бензин или метанол. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. Этот процесс называется "реформингом". Водород можно также получить из аммиака, альтернативных ресурсов, таких как газ из городских свалок и от станций очистки сточных вод, а также путем электролиза воды, при котором для разложения воды на водород и кислород используется электричество. В настоящее время большинство технологий топливных элементов, применяемых на транспорте, используют метанол.

Для реформинга топлива с целью получения водорода для топливных элементов были разработаны разные средства. Министерство энергетики США разработало топливную установку внутри машины для реформинга бензина с тем, чтобы обеспечивать подачу водорода на автономный топливный элемент. Исследователи из Тихоокеанской северо-западной национальной лаборатории в США продемонстрировали компактную топливную установку по реформингу величиной в одну десятую размеров блока питания. Американская энергокомпания, Northwest Power Systems, и Национальная лаборатория Сандия продемонстрировали топливную реформинговую установку, которая преобразует дизельное топливо в водород для топливных элементов.

По отдельности топливные элементы производят около 0,7-1,0 В каждый. Чтобы увеличить напряжение, элементы собираются в "каскад", т.е. последовательное соединение. Чтобы создать больший ток, наборы каскадных элементов соединяются параллельно. Если объединить каскады топливных элементов с топливной установкой, системой подачи воздуха и охлаждения, а также с системой управления, то получится двигатель на топливных элементах. Этот двигатель может приводить в действие транспортное средство, стационарную электростанцию или переносной электрический генератор6. Двигатели на топливных элементах бывают разных размеров в зависимости от назначения, типа топливного элемента и используемого топлива. Например, размер каждой из четырех отдельных стационарных электростанций мощностью 200 кВт, установленных в банке в Омахе, приблизительно равен размеру прицепа грузовика.

Применения

Топливные элементы могут использоваться как в стационарных, так и в передвижных устройствах. В ответ на ужесточающиеся требования по нормам выбросов в США производители автомобилей, включая DaimlerChrysler, Toyota, Ford, General Motors, Volkswagen, Honda и Nissan стали проводить эксперименты и демонстрировать машины, работающие на топливных элементах. Ожидается, что первые коммерческие автомобили на топливных элементах появятся на дорогах в 2004 или 2005 г.

Серьезной вехой в истории развитии технологии топливных элементов стала демонстрация в июне 1993 г. экспериментального 32-футового городского автобуса компании Ballard Power System с двигателем на водородных топливных элементах мощностью 90 киловатт. С тех пор было разработано и запущено в эксплуатацию много разных типов и разных поколений пассажирских транспортных средств на топливных элементах, работающих на разных видах топлива. С конца 1996 г. в Палм Дезерт в Калифорнии стали использоваться три мототележки для гольфа на водородных топливных элементах. На дорогах Чикаго, Иллинойс; Ванкувера, Британская Колумбия; и Осло, Норвегия проводятся испытания городских автобусов, работающих на топливных элементах. На улицах Лондона проходят проверку такси, работающие на щелочных топливных элементах.

Демонстрируются также и стационарные установки, использующие технологию топливных элементов, но они пока не имеют широкого коммерческого применения. Первый национальный банк Омаха в Небраске использует систему на топливных элементах для питания компьютеров, поскольку эта система более надежна, чем старая система, работавшая от основной сети с аварийным аккумуляторным питанием. Самая большая в мире коммерческая система на топливных элементах мощностью 1,2 мВт будет скоро установлена в центре по обработке почтовой корреспонденции на Аляске. Проходят испытания и демонстрируются также работающие на топливных элементах портативные компьютеры-лаптопы, системы управления, используемые на станциях очистки сточных вод и торговые автоматы.

"За" и "против"

Топливные элементы имеют ряд преимуществ. В то время как КПД современных двигателей внутреннего сгорания составляет только 12-15%, у топливных элементов этот коэффициент составляет 50%. КПД топливных элементов может оставаться на довольно высоком уровне, даже когда они используются не на полную номинальную мощность, что является серьезным преимуществом по сравнению с двигателями на бензине.

Модульный принцип устройства топливных элементов означает, что мощность электростанции на топливных элементах можно увеличить, просто добавив еще несколько каскадов. Это обеспечивает минимизацию коэффициента недоиспользования мощности, что позволяет лучше приводить в соответствие спрос и предложение. Поскольку КПД блока топливных элементов определяется производительностью отдельных элементов, небольшие электростанции на топливных элементах работают также эффективно, как и большие. Кроме того, сбросное тепло от стационарных систем на топливных элементах может быть использовано на обогрев воды и помещений, еще более увеличивая эффективность использования энергии.

При использовании топливных элементов практически не бывает вредных выбросов. При работе двигателя на чистом водороде в качестве побочных продуктов образуются только тепло и чистый водяной пар. Так на космических кораблях астронавты пьют воду, которая образуется в результате работы бортовых топливных элементов. Состав выбросов зависит от природы источника водорода. При использовании метанола образуются нулевые выбросы оксидов азота и оксида углерода и только небольшие выбросы углеводорода. Выбросы увеличиваются по мере перехода от водорода к метанолу и бензину, хотя даже при использовании бензина уровень выбросов будет оставаться достаточно низким. В любом случае замена сегодняшних традиционных двигателей внутреннего сгорания на топливные элементы привела бы к общему снижению выбросов СО2 и оксидов азота.

Использование топливных элементов обеспечивает гибкость энергетической инфраструктуры, создавая дополнительные возможности для децентрализованного производства электроэнергии. Множественность децентрализованных источников энергии позволяет снизить потери при передаче электроэнергии и развить рынки сбыта энергии (что особенно важно для отдаленных и сельских районов, при отсутствии доступа к линиям электропередач). С помощью топливных элементов отдельные жители или кварталы могут сами обеспечить себя большей частью электроэнергии и таким образом значительно повысить эффективность ее использования.

Топливные элементы предлагают энергию высокого качества и повышенной надежности. Они долговечны, у них нет подвижных частей, и они производят постоянный объем энергии.

Однако технология топливных элементов нуждается в дальнейшем совершенствовании с тем, чтобы повысить их производительность, снизить затраты и, таким образом, сделать топливные элементы конкурентноспособными относительно других энергетических технологий. Следует отметить, что когда рассматриваются затратные характеристики энергетических технологий, сравнения должны проводиться на основе всех составляющих технологических характеристик, включая капитальные эксплуатационные расходы, выбросы загрязняющих веществ, качество энергии, долговечность, вывод из эксплуатации и гибкость.

Хотя водородный газ является наилучшим топливом, инфраструктуры или транспортной базы для него еще не существует. В ближайшей перспективе для обеспечения энергоустановок источниками водорода в виде бензина, метанола или природного газа могли бы использоваться существующие системы снабжения ископаемым топливом (газовые станции и т.д.). Это исключило бы необходимость создания специальных водородозаправочных станций, но потребовало бы, чтобы на каждом транспортном средстве был установлен преобразователь ("реформатор") ископаемого топлива в водород. Недостаток этого подхода состоит в том, что он использует ископаемое топливо и, таким образом, приводит к выбросам двуокиси углерода. Метанол, являющийся в настоящее время ведущим кандидатом, создает меньше выбросов, чем бензин, но он бы потребовал установки на автомобиле емкости большего объема, поскольку он занимает в два раза больше места при одинаковом энерго-содержании.

В отличие от систем снабжения ископаемым топливом, солнечные и ветровые системы (использующие электричество для создания водорода и кислорода из воды) и системы прямого фотопреобразования энергии (использующие полупроводниковые материалы или ферменты для производства водорода) могли бы обеспечивать снабжение водородом без этапа реформинга, и, таким образом, можно было бы избежать выбросов вредных веществ, что наблюдается при использовании метаноловых или бензиновых топливных элементов. Водород мог бы накапливаться и преобразовываться в электричество в топливном элементе по мере необходимости. В перспективе соединение топливных элементов с такого рода возобновляемыми источниками энергии, скорее всего, будет эффективной стратегией обеспечения продуктивным, экологически продуманным и универсальным источником энергии.

Рекомендации IEER заключаются в том, чтобы местные и федеральные власти, а также власти штатов часть своих закупочных бюджетов по транспортному хозяйству направляли на транспортные средства на топливных элементах, а также на стационарные системы на топливных элементах для обеспечения теплом и электричеством некоторых из своих существенных или новых зданий. Это будет способствовать развитию жизненно важной технологии и снижению выбросов парниковых газов.

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Схема гальванического элемента

Wikimedia commons

Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким - это может быть и полимерный, и керамический материал.

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.


Пальчиковые щелочные батарейки

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора - источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.


Автомобильный свинцово-кислотный аккумулятор

На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.


Литий-ионный аккумулятор для мобильного телефона

Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые образование взрывоопасных структур, и компоненты, возгорание на ранних стадиях.

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы - в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа - газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H 2 + O 2 → 2H 2 O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство - совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.


Принципиальная схема работы водородного топливного элемента

Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду - окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.


Водородный топливный элемент Toyota

Joseph Brent / flickr

Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O 2– , как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых , например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) - устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов - высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых .

* * *

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов - «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых - топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.


Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике . Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Александр Дубов

Давно хотел рассказать про ещё одно направление компании Альфаинтек. Это разработка, продажа и обслуживание водородных топливных элементов. Сразу хочу объяснить ситуацию с данными топливными элементами в России.

Из-за достаточно высокой стоимости и полного отсутствия водородных станций для зарядки данных топливных элементов, продажа их в России не предполагается. Тем не менее в Европе, особенно в Финляндии, данные топливные элементы с каждым годом набирают популярность. В чём же секрет? Давайте посмотрим. Данное устройство экологически чистое, легкое в эксплуатации и эффективное. Оно приходит на помощь человеку там, где ему необходима электрическая энергия. Вы можете взять его с собой в дорогу, в поход, использовать на даче, в квартире как автономный источник электроэнергии.

Электричество в топливном элементе вырабатывается в результате химической реакции водорода, поступающего из баллона, с гидридом металла и кислородом из воздуха. Баллон не взрывоопасен и может храниться у Вас в шкафу годы, ожидая своего часа. Вот это, пожалуй, одно из главных достоинств данной технологии хранения водорода. Именно хранение водорода является одной из главных проблем в развитии водородного топлива. Уникальные новые легкие топливные элементы, которые преобразуют водород в обычное электричество, безопасно, тихо и без выброса вредных веществ.

Данный вид электричества можно использовать в тех местах, где нет центрального электричества, или как аварийный источник питания.

В отличие от обычных аккумуляторов, которые нужно заряжать и при этом отключать от потребителя электроэнергии в процессе зарядки, топливный элемент работает как «умное» устройство. Данная технология обеспечивает бесперебойное питание в течение всего срока использования благодаря уникальной функции сохранения питания при смене ёмкости с топливом, что позволяет пользователю никогда не выключать потребитель. В закрытом футляре топливные элементы могут храниться на протяжении нескольких лет без потери объема водорода и уменьшения своей мощности.

Топливный элемент предназначен для ученых и исследователей, служб охраны правопорядка, спасателей, владельцев судов и пристаней для яхт, и для всех тех, кому нужен надежный источник питания на случай экстренных ситуаций.
Вы можете получить напряжение 12 вольт или 220 вольт и тогда у вас будет достаточно энергии, чтобы использовать телевизор, стереосистему, холодильник, кофеварку, чайник, пылесос, дрель, микроплиту и другие электробытовые приборы.

Топливные элементы Hydrocell могут продаваться как единичное устройство, так и батареями из 2–4 элементов. Два или четыре элемента могут быть объединены либо для увеличения мощности, либо для увеличения силы тока.

ВРЕМЯ РАБОТЫ ЭЛЕКТРОБЫТОВЫХ ПРИБОРОВ С ТОПЛИВНЫМИ ЭЛЕМЕНТАМИ

Электробытовые приборы

Время работы за день (мин.)

Потреб. мощность за день(Вт*ч)

Время работы с топливными элементами

Электрический чайник

Кофеварка

Микроплита

Телевизор

1 лампочка 60W

1 лампочка 75W

3 лампочки 60W

Компьютер ноутбук

Холодильник

Энергосберегающая лампа

* — непрерывная работа

Топливные элементы полностью заряжаются на специальных водородных станциях. Но что, если вы отправляетесь далеко от них и нет возможности подзарядиться? Специально для таких случаев специалисты компании Alfaintek разработали баллоны для хранения водорода, с которыми топливные элементы проработают значительно дольше.

Выпускаются два типа баллонов: НС-МН200 и НС-МН1200.
НС-МН200 в сборе имеет размер чуть больше банки для кока-колы, он вмещает в себя 230 литров водорода, что соответствует 40Ач (12V), и весит всего 2,5 кг.
Баллон с гидридом металла НС-МН1200 вмещает в себя 1200 литров водорода, что соответствует 220Ач (12V). Вес баллона 11 кг.

Техника применения гидридов металлов является безопасным и легким способом хранения, перевозки и использования водород. При хранении в виде гидрида металла водород находится в форме химического соединения, а не в газообразной форме. Данный метод дает возможность получить достаточно большую плотность энергии. Преимуществом применения гидрида металла является то, что давление внутри баллона составляет всего 2-4 бара.

Баллон не взрывоопасен и может храниться годы без снижения объема вещества. Поскольку водород хранится в виде гидрида металла, чистота водорода, полученного из баллона, очень высока — 99,999%. Баллоны для хранения водорода в виде гидрида металла можно использовать не только с топливными элементами HC 100,200,400, но и в других случаях, когда нужен чистый водород. Баллоны можно легко подсоединить к топливному элементу или к другому устройству при помощи быстро соединяющегося разъема и гибкого шланга.

Очень жаль, что данные топливные элементы не продаются в России. А ведь среди нашего населения так много людей, которые нуждаются в таковых. Чтож поживём, увидим, глядишь и у нас появятся. А пока будем покупать навязанные государством энергосберегающие лампочки.

P.S. Похоже тема окончательно ушла в небытиё. Через столько лет после написания этой статьи не вышло ничего. Может я, конечно, не везде ищу, но то, что попадается на глаза совсем не радует. Технология и задумка хорошая, но вот развития пока не нашла.

Топливная ячейка (Fuel Cell ) – это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод - кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток - для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation - частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве - реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы.

При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента.

Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе.

Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств - в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.

Виды топливных ячеек

В настоящее время существуют такие виды топливных ячеек:

  • AFC – Alkaline Fuel Cell (щелочная топливная ячейка);
  • PAFC – Phosphoric Acid Fuel Cell (фосфорно-кислотная топливная ячейка);
  • PEMFC – Proton Exchange Membrane Fuel Cell (топливная ячейка с протонной обменной мембраной);
  • DMFC – Direct Methanol Fuel Cell (топливная ячейка с прямым распадом метанола);
  • MCFC – Molten Carbonate Fuel Cell (топливная ячейка расплавленного карбоната);
  • SOFC – Solid Oxide Fuel Cell (твердооксидная топливная ячейка).
Загрузка...
Top